scholarly journals Effect of 2021 Assembly Election in India on Covid-19 Transmission

Author(s):  
Souvik Manik ◽  
Sabyasachi Pal ◽  
Manoj Mandal ◽  
Mangal Hazra

India is one of the countries in the world which is badly affected by the Covid-19 second wave. Assembly election in four states and a union territory of India was taken place during March-May 2021 when the Covid-19 second wave was close to its peak and affected a huge number of people. We studied the impact of assembly election on the effective contact rate and the effective reproduction number of Covid-19 using different epidemiological models like SIR, SIRD, and SEIR. We also modeled the effective reproduction number for all election-bound states using different mathematical functions. We separately studied the case of all election-bound states and found all the states shown a distinct increase in the effective contact rate and the effective reproduction number during the election-bound time and just after that compared to pre-election time. States, where elections were conducted in single-phase, showed less increase in the effective contact rate and the reproduction number. The election commission imposed extra measures from the first week of April 2021 to restrict big campaign rallies, meetings, and different political activities. The effective contact rate and the reproduction number showed a trend to decrease for few states due to the imposition of the restrictions. We also compared the effective contact rate, and the effective reproduction number of all election-bound states and the rest of India and found all the parameters related to the spread of virus for election-bound states are distinctly high compared to the rest of India.

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Ihsan Ullah ◽  
Saeed Ahmad ◽  
Qasem Al-Mdallal ◽  
Zareen A. Khan ◽  
Hasib Khan ◽  
...  

Abstract A simple deterministic epidemic model for tuberculosis is addressed in this article. The impact of effective contact rate, treatment rate, and incomplete treatment versus efficient treatment is investigated. We also analyze the asymptotic behavior, spread, and possible eradication of the TB infection. It is observed that the disease transmission dynamics is characterized by the basic reproduction ratio $\Re _{0}$ ℜ 0 ; if $\Re _{0}<1$ ℜ 0 < 1 , there is only a disease-free equilibrium which is both locally and globally asymptotically stable. Moreover, for $\Re _{0}>1$ ℜ 0 > 1 , a unique positive endemic equilibrium exists which is globally asymptotically stable. The global stability of the equilibria is shown via Lyapunov function. It is also obtained that incomplete treatment of TB causes increase in disease infection while efficient treatment results in a reduction in TB. Finally, for the estimated parameters, some numerical simulations are performed to verify the analytical results. These numerical results indicate that decrease in the effective contact rate λ and increase in the treatment rate γ play a significant role in the TB infection control.


2020 ◽  
Author(s):  
Paul J Birrell ◽  
Joshua Blake ◽  
Edwin van Leeuwen ◽  
Nick Gent ◽  
Daniela De Angelis ◽  
...  

England has been heavily affected by the SARS-CoV-2 pandemic, with severe 'lock-down' mitigation measures now gradually being lifted. The real-time pandemic monitoring presented here has contributed to the evidence informing this pandemic management. Estimates on the 10th May showed lock-down had reduced transmission by 75%, the reproduction number falling from 2.6 to 0.61. This regionally-varying impact was largest in London of 81% (95% CrI: 77%-84%). Reproduction numbers have since slowly increased, and on 19th June the probability that the epidemic is growing was greater than 50% in two regions, South West and London. An estimated 8% of the population had been infected, with a higher proportion in London (17%). The infection-to-fatality ratio is 1.1% (0.9%-1.4%) overall but 17% (14%-22%) among the over-75s. This ongoing work will be key to quantifying any widespread resurgence should accrued immunity and effective contact tracing be insufficient to preclude a second wave.


Author(s):  
Emma Sue McBryde ◽  
James M Trauer ◽  
Adeshina Adekunle ◽  
Romain Ragonnet ◽  
Michael T Meehan

Australia is one of a few countries which has managed to control COVID-19 epidemic before a major epidemic took place. Currently with just under 7000 cases and 100 deaths, Australia is seeing less than 20 new cases per day. This is a positive outcome, but makes estimation of current effective reproduction numbers difficult to estimate. Australia, like much of the world is poised to step out of lockdown and looking at which measures to relax first. We use age-based contact matrices, calibrated to Chinese data on reproduction numbers and difference in infectiousness and susceptibility of children to generate next generation matrices (NGMs) for Australia. These matrices have a spectral radius of 2.49, which is hence our estimated basic reproduction number for Australia. The effective reproduction number (Reff) for Australia during the April/May lockdown period is estimated by other means to be around 0.8. We simulate the impact of lockdown on the NGM by first applying observations through Google Mobility Report for Australia at 3 locations: home (increased contacts by 18%), work (reduced contacts by 34%) and other (reduced contacts by 40%), and we reduce schools to 3% reflecting attendance rates during lockdown. Applying macro-distancing to the NGM leads to a spectral radius of 1.76. We estimate that the further reduction of the reproduction number to current levels of Reff = 0.8 is achieved by a micro-distancing factor of 0.26. That is, in a given location, people are 26% as likely as usual to have an effective contact with another person. We apply both macro and micro-distancing to the NGMs to examine the impact of different exit strategies. We find that reopening schools is estimated to reduce Reff from 0.8 to 0.78. This is because increase in school contact is offset by decrease in home contact. The NGMs all estimate that adults aged 30-50 are responsible for the majority of transmission. We also find that micro-distancing is critically important to maintain Reff <1. There is considerable uncertainty in these estimates and a sensitivity and uncertainty analysis is presented.


2021 ◽  
Author(s):  
Mario Santana-Cibrian ◽  
M. Adrian Acuña-Zegarra ◽  
Carlos E. Rodríguez Hernández-Vela ◽  
Jorge X. Velasco-Hernandez ◽  
Ramsés H. Mena

Key high transmission dates for the year 2020 are used to create scenarios to model the evolution of the COVID-19 pandemic in several states of Mexico for 2021. These scenarios are obtained through the estimation of a time-dependent contact rate, where the main assumption is that the dynamic of the disease is heavily determined by the mobility and social activity of the population during holidays and other important calendar dates. First, changes in the effective contact rate on predetermined dates of 2020 are estimated. Then, using the instantaneous reproduction number to characterize the status of the epidemic (Rt ≈ 1, Rt > 1 or Rt < 1), this information is used to propose different scenarios for the number of cases and deaths for 2021. The main assumption is that the effective contact rate during 2021 will maintain a similar trend to that observed during 2020 on key calendar dates. All other conditions are assumed to remain constant in the time scale of the projections. The objective is to generate a range of scenarios that could be useful to evaluate the possible evolution of the epidemic and its likely impact on incidence and mortality.


Author(s):  
A. Omame ◽  
D. Okuonghae ◽  
U. E. Nwafor ◽  
B. U. Odionyenma

A co-infection model for human papillomavirus (HPV) and syphilis with cost-effectiveness optimal control analysis is developed and presented. The full co-infection model is shown to undergo the phenomenon of backward bifurcation when a certain condition is satisfied. The global asymptotic stability of the disease-free equilibrium of the full model is shown not to exist when the associated reproduction number is less than unity. The existence of endemic equilibrium of the syphilis-only sub-model is shown to exist and the global asymptotic stability of the disease-free and endemic equilibria of the syphilis-only sub-model was established, for a special case. Sensitivity analysis is also carried out on the parameters of the model. Using the syphilis associated reproduction number, [Formula: see text], as the response function, it is observed that the five-ranked parameters that drive the dynamics of the co-infection model are the demographic parameter [Formula: see text], the effective contact rate for syphilis transmission, [Formula: see text], the progression rate to late stage of syphilis [Formula: see text], and syphilis treatment rates: [Formula: see text] and [Formula: see text] for co-infected individuals in compartments [Formula: see text] and [Formula: see text], respectively. Moreover, when the HPV associated reproduction number, [Formula: see text], is used as the response function, the five most dominant parameters that drive the dynamics of the model are the demographic parameter [Formula: see text], the effective contact rate for HPV transmission, [Formula: see text], the fraction of HPV infected who develop persistent HPV [Formula: see text], the fraction of individuals vaccinated against incident HPV infection [Formula: see text] and the HPV vaccine efficacy [Formula: see text]. Numerical simulations of the optimal control model showed that the optimal control strategy which implements syphilis treatment controls for singly infected individuals is the most cost-effective of all the control strategies in reducing the burden of HPV and syphilis co-infections.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1817 ◽  
Author(s):  
Chacha M. Issarow ◽  
Nicola Mulder ◽  
Robin Wood

Background: Tuberculosis (TB) disease burden is determined by both infection and progression rate to disease. Progression rate varies by immune status, with prior infection in high burdened settings significantly reducing the progression to disease from subsequent reinfections and completion of successful treatment associated with increased risk of subsequent TB disease. Novel studies of TB vaccines are now underway targeting high risk individuals who have completed successful combination TB chemotherapy for active TB. Methods: In our study, we explored the impact of effective contact rate (β) and post-treatment immune status on population TB burden using a mathematical model incorporating five immunological states; susceptible, newly infected, reinfected, active TB and treated TB. Results: We found that the number of newly infected individuals increased with increasing values of β< 10yr-1, but declined when β> 10yr-1. Corresponding numbers of reinfected individuals increased with increasing values of β irrespective of post-treatment immune status. Furthermore, we noted that the number of active TB cases decreased by 7 - 17% when treated individuals moved to either newly infected or reinfected immune states, respectively, rather than to the fully susceptible state at values of β< 10yr-1. The corresponding declines in TB burden were only 2 - 7% at values of β> 10yr-1. Results show that TB prevalence in high burden settings is primarily driven by effective contact rates, which are significantly modified by pre- and post-treatment immune factors. Conclusions: The observation that impact of post-treatment immune status modification on population burden may be diminished in very high burdened settings will be important for vaccine design.


2020 ◽  
pp. 14-28
Author(s):  
Md. Mijanur Rahman ◽  
Md. Sadekur Rahman Rani

A novel compartmental model is proposed to project the COVID-19 dynamics in Bangladesh. The exposed population is divided into two classes: tested and not tested. Model parameters are estimated by fitting the output with empirical COVID-19 data of Bangladesh from 7 April 2020 to 15 June 2020. It is found that even if 90% of exposed individuals are tested, number of unidentified cases (recovered or dead) is 3 to 4 times than that of identified cases. As of 15 June 2020, Bangladesh is using the Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) based test to detect the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The impact of false negative rate of this test on unidentified infection is analyzed. It is found that the year-end total recoveries (deaths) surges 700 (800) times if the false negative rate is doubled. Periodic lockdown and relaxation intervals are incorporated by defining the effective contact rate (β) as a periodic function of time. Impact of lockdown is perspicuous from the periodic fluctuation of the basic reproduction number ( ). It is observed that a 90-day-lockdwon reduces the final outcome by 3% while a 30-day-lockdwon increases it by 2%. On other hand, casualties are 10 to 100 times worse in case of no lockdown even with less than half effective contact rate. Analysis of strictness of isolation reveals that a 12.5% increase in the strictness coefficient reduces the exposed population 2.5 times whereas a 37.5% decrease in it intensifies the outcome nearly 9 times. Projections up to 6 April 2021 suggests that the epidemic will reach its peak in Bangladesh in August 2020.


Author(s):  
Christopher S. Bornaa ◽  
Baba Seidu ◽  
Oluwole D. Makinde

Abstract A deterministic model is developed to study the dynamics of poliomyelitis virus infection with vaccination in a population with insanitary conditions. The polio-free equilibrium is shown to be locally asymptotically stable whenever the basic reproduction number is less than one but global stability requires other conditions to be satisfied. The spread of the disease is also shown to be sensitive to the average contact rate with the faecal matter of the infectious individuals, the transmission probability, natural death rate and vaccination, probabilities of the exposed individuals progressing to the non-paralytic and paralytic classes, the open defecation parameter and the polio-induced death rate. Other interesting results are illustrated through numerical simulation of the model.


2020 ◽  
Author(s):  
Eduardo Atem De Carvalho ◽  
Rogerio Atem De Carvalho

BACKGROUND Since the beginning of the COVID-19 pandemic, researchers and health authorities have sought to identify the different parameters that govern their infection and death cycles, in order to be able to make better decisions. In particular, a series of reproduction number estimation models have been presented, with different practical results. OBJECTIVE This article aims to present an effective and efficient model for estimating the Reproduction Number and to discuss the impacts of sub-notification on these calculations. METHODS The concept of Moving Average Method with Initial value (MAMI) is used, as well as a model for Rt, the Reproduction Number, is derived from experimental data. The models are applied to real data and their performance is presented. RESULTS Analyses on Rt and sub-notification effects for Germany, Italy, Sweden, United Kingdom, South Korea, and the State of New York are presented to show the performance of the methods here introduced. CONCLUSIONS We show that, with relatively simple mathematical tools, it is possible to obtain reliable values for time-dependent, incubation period-independent Reproduction Numbers (Rt). We also demonstrate that the impact of sub-notification is relatively low, after the initial phase of the epidemic cycle has passed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ganna Rozhnova ◽  
Christiaan H. van Dorp ◽  
Patricia Bruijning-Verhagen ◽  
Martin C. J. Bootsma ◽  
Janneke H. H. M. van de Wijgert ◽  
...  

AbstractThe role of school-based contacts in the epidemiology of SARS-CoV-2 is incompletely understood. We use an age-structured transmission model fitted to age-specific seroprevalence and hospital admission data to assess the effects of school-based measures at different time points during the COVID-19 pandemic in the Netherlands. Our analyses suggest that the impact of measures reducing school-based contacts depends on the remaining opportunities to reduce non-school-based contacts. If opportunities to reduce the effective reproduction number (Re) with non-school-based measures are exhausted or undesired and Re is still close to 1, the additional benefit of school-based measures may be considerable, particularly among older school children. As two examples, we demonstrate that keeping schools closed after the summer holidays in 2020, in the absence of other measures, would not have prevented the second pandemic wave in autumn 2020 but closing schools in November 2020 could have reduced Re below 1, with unchanged non-school-based contacts.


Sign in / Sign up

Export Citation Format

Share Document