scholarly journals Connectivity profile laterality in corticostriatal functional circuitry: a fingerprinting approach

2021 ◽  
Author(s):  
Cole Korponay ◽  
Elliot A Stein ◽  
Thomas Ross

An abnormal magnitude of hemispheric difference (i.e. laterality) in corticostriatal circuits is a shared feature of numerous neurodevelopmental and psychiatric disorders. Detailed quantitation and regional localization of corticostriatal laterality in normative samples stands to further the understanding of hemispheric differences in healthy and disease states. Here, we used a fingerprinting approach to quantify functional connectivity profile laterality (the overall magnitude by which a voxel's profile of connectivity with homotopic regions of the ipsilateral and contralateral cortex differs) in the striatum. Laterality magnitude heatmaps revealed laterality hotspots (constituting outliers in the voxelwise distribution) in the right ventrolateral putamen and left central caudate. Findings were replicated in an independent sample, with significant (p<0.05) spatial overlap observed between the location of the laterality hotspots across samples, as measured via Dice coefficients. At both hotspots, a primary driver of overall laterality was the difference in striatal connectivity strength with the right and left pars opercularis of the inferior frontal gyrus. Right and left striatum laterality magnitude maps were found to significantly differ (p<0.05) at the hotspot locations. Moreover, using subjects' left, but not right, striatum laterality magnitude maps, a support vector machine trained on a discovery sample (n=77) and tested on a replication sample (n=77) significantly predicted (r=0.25, p=0.028) subject performance on a language task, known for its lateralized nature. Laterality magnitude maps remained consistent across different cortical atlas parcellations and did not differ significantly between right handed and left handed individuals. In sum, meaningful variation in functional connectivity profile laterality, both spatially within the striatum and across subjects, is evident in corticostriatal circuits. Findings provide a basis to examine corticostriatal connectivity profile laterality in psychiatric illness.

2019 ◽  
Vol 31 (4) ◽  
pp. 560-573 ◽  
Author(s):  
Kenny Skagerlund ◽  
Taylor Bolt ◽  
Jason S. Nomi ◽  
Mikael Skagenholt ◽  
Daniel Västfjäll ◽  
...  

What are the underlying neurocognitive mechanisms that give rise to mathematical competence? This study investigated the relationship between tests of mathematical ability completed outside the scanner and resting-state functional connectivity (FC) of cytoarchitectonically defined subdivisions of the parietal cortex in adults. These parietal areas are also involved in executive functions (EFs). Therefore, it remains unclear whether there are unique networks for mathematical processing. We investigate the neural networks for mathematical cognition and three measures of EF using resting-state fMRI data collected from 51 healthy adults. Using 10 ROIs in seed to whole-brain voxel-wise analyses, the results showed that arithmetical ability was correlated with FC between the right anterior intraparietal sulcus (hIP1) and the left supramarginal gyrus and between the right posterior intraparietal sulcus (hIP3) and the left middle frontal gyrus and the right premotor cortex. The connection between the posterior portion of the left angular gyrus and the left inferior frontal gyrus was also correlated with mathematical ability. Covariates of EF eliminated connectivity patterns with nodes in inferior frontal gyrus, angular gyrus, and middle frontal gyrus, suggesting neural overlap. Controlling for EF, we found unique connections correlated with mathematical ability between the right hIP1 and the left supramarginal gyrus and between hIP3 bilaterally to premotor cortex bilaterally. This is partly in line with the “mapping hypothesis” of numerical cognition in which the right intraparietal sulcus subserves nonsymbolic number processing and connects to the left parietal cortex, responsible for calculation procedures. We show that FC within this circuitry is a significant predictor of math ability in adulthood.


2020 ◽  
Vol 61 (10) ◽  
pp. 1388-1397
Author(s):  
Yi Cheng ◽  
Li Yan ◽  
Liqun Hu ◽  
Hongyun Wu ◽  
Xin Huang ◽  
...  

Background Previous studies have linked high myopia (HM) to brain activity, and the difference between HM and low myopia (LM) can be assessed. Purpose To study the differences in functional networks of brain activity between HM and LM by the voxel-level degree centrality (DC) method. Material and Methods Twenty-eight patients with HM (10 men, 18 women), 18 patients with LM (4 men, 14 women), and 59 healthy controls (27 men, 32 women) were enrolled in this study. The voxel-level DC method was used to assess spontaneous brain activity. Correlation analysis was used to explore the change of average DC value in different brain regions, in order to analyze differences in brain activity between HM and LM. Results DC values of the right cerebellum anterior lobe/brainstem, right parahippocampal gyrus, and left caudate in HM patients were significantly higher than those in LM patients ( P < 0.05). In contrast, DC values of the left medial frontal gyrus, right inferior frontal gyrus, left middle frontal gyrus, and left inferior parietal lobule were significantly lower in patients with HM ( P < 0.05). However, there was no correlation between behavior and average DC values in different brain regions ( P < 0.05). Conclusion Different changes in brain regions between HM and LM may indicate differences in neural mechanisms between HM and LM. DC values could be useful as biomarkers for differences in brain activity between patients with HM and LM. This study provides a new method to assess differences in functional networks of brain activity between patients with HM and LM.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tiina Salminen ◽  
Caroline Garcia Forlim ◽  
Torsten Schubert ◽  
Simone Kühn

AbstractSeveral studies have shown that the benefits of working memory (WM) training can be attributed to functional and structural neural changes in the underlying neural substrate. In the current study, we investigated whether the functional connectivity of the brain at rest in the default mode network (DMN) changes with WM training. We varied the complexity of the training intervention so, that half of the participants attended dual n-back training whereas the other half attended single n-back training. This way we could assess the effects of different training task parameters on possible connectivity changes. After 16 training sessions, the dual n-back training group showed improved performance accompanied by increased functional connectivity of the ventral DMN in the right inferior frontal gyrus, which correlated with improvements in WM. We also observed decreased functional connectivity in the left superior parietal cortex in this group. The single n-back training group did not show significant training-related changes. These results show that a demanding short-term WM training intervention can alter the default state of the brain.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yu-Chen Chen ◽  
Jian Zhang ◽  
Xiao-Wei Li ◽  
Wenqing Xia ◽  
Xu Feng ◽  
...  

Objective. Subjective tinnitus is hypothesized to arise from aberrant neural activity; however, its neural bases are poorly understood. To identify aberrant neural networks involved in chronic tinnitus, we compared the resting-state functional magnetic resonance imaging (fMRI) patterns of tinnitus patients and healthy controls.Materials and Methods. Resting-state fMRI measurements were obtained from a group of chronic tinnitus patients (n=29) with normal hearing and well-matched healthy controls (n=30). Regional homogeneity (ReHo) analysis and functional connectivity analysis were used to identify abnormal brain activity; these abnormalities were compared to tinnitus distress.Results. Relative to healthy controls, tinnitus patients had significant greater ReHo values in several brain regions including the bilateral anterior insula (AI), left inferior frontal gyrus, and right supramarginal gyrus. Furthermore, the left AI showed enhanced functional connectivity with the left middle frontal gyrus (MFG), while the right AI had enhanced functional connectivity with the right MFG; these measures were positively correlated with Tinnitus Handicap Questionnaires (r=0.459,P=0.012andr=0.479,P=0.009, resp.).Conclusions. Chronic tinnitus patients showed abnormal intra- and interregional synchronization in several resting-state cerebral networks; these abnormalities were correlated with clinical tinnitus distress. These results suggest that tinnitus distress is exacerbated by attention networks that focus on internally generated phantom sounds.


2013 ◽  
Vol 25 (4) ◽  
pp. 558-570 ◽  
Author(s):  
Alkomiet Hasan ◽  
Joseph M. Galea ◽  
Elias P. Casula ◽  
Peter Falkai ◽  
Sven Bestmann ◽  
...  

The pFC has a crucial role in cognitive control, executive function, and sensory processing. Functional imaging, neurophysiological, and animal studies provide evidence for a functional connectivity between the dorsolateral pFC (DLPFC) and the primary motor cortex (M1) during free choice but not instructed choice selection tasks. In this study, twin coil, neuronavigated TMS was used to examine the precise timing of the functional interaction between human left DLPFC and ipsilateral M1 during the execution of a free/specified choice selection task involving the digits of the right hand. In a thumb muscle that was not involved in the task, a conditioning pulse to the left DLPFC enhanced the excitability of the ipsilateral M1 during free selection more than specified selection 100 msec after presentation of the cue; the opposite effect was seen at 75 msec. However, the difference between free and externally specified conditions disappeared when a task-specific muscle was investigated. In this case, the influence from DLPFC was dominated by task involvement rather than mode of selection, suggesting that other processes related to movement execution were also operating. Finally, we show that the effects were spatially specific because they were absent when an adjacent area of DLPFC was stimulated. These results reveal temporally and spatially selective interactions between BA 46 and M1 that are both task and muscle specific.


2012 ◽  
Vol 108 (12) ◽  
pp. 3382-3392 ◽  
Author(s):  
Aaron Kucyi ◽  
Mojgan Hodaie ◽  
Karen D. Davis

Neuroimaging studies have demonstrated that the right temporoparietal junction (TPJ) is activated during detection of salient stimuli, including pain, in the sensory environment. Right TPJ damage more often produces spatial neglect than left TPJ damage. We recently reported a right lateralized system of white matter connectivity of the TPJ. However, lateralization in intrinsic TPJ functional connectivity during a task/stimuli-independent state has not been fully characterized. Here we used resting-state functional MRI in healthy humans to compare the functional connectivity of right and left TPJ with salience- and attention-related brain networks. Independent components analysis revealed that both right and left TPJ were functionally connected with a network that included the anterior insula, dorsolateral prefrontal cortex (PFC), and mid-cingulate cortex, considered to be the salience/ventral attention network. Dual regression revealed this network was more strongly connected with right TPJ than left TPJ. Seed-based functional connectivity analysis showed 1) negative connectivity the TPJ bilaterally with the “default mode network”; 2) positive connectivity of TPJ bilaterally with the salience/ventral attention network; 3) stronger connectivity between right TPJ compared with left TPJ with regions within the salience/ventral attention network and mid-insula, S2, and temporal/parietal opercula (implicated in pain); and 4) stronger connectivity of left TPJ compared with right TPJ with the “executive control network,” including the dorsomedial/medial PFC, inferior frontal gyrus, and cerebellum (crus I/II). Our findings build on classic lesion and neuroimaging studies, demonstrating a complex spatial network organization of lateralization in TPJ functional connectivity in the absence of an overt stimulus.


2020 ◽  
Author(s):  
Ziqian Wang ◽  
Lucius Fekonja ◽  
Felix Dreyer ◽  
Peter Vajkoczy ◽  
Thomas Picht

AbstractRepetitive TMS (rTMS) allows to non-invasively and transiently disrupt local neuronal functioning. Its potential for mapping of language function is currently explored. Given the inter-individual heterogeneity of tumor impact on the language network and resulting rTMS derived functional mapping, we propose to use machine learning strategies to classify potential patterns of functional reorganization. We retrospectively included 90 patients with left perisylvian glioma tumors, world health organization (WHO) grade II-IV, affecting the language network. All patients underwent navigated rTMS language mappings. The severity of aphasia was assessed preoperatively using the Berlin Aphasia Score (BAS), which is adapted to the Aachener Aphasia Test (AAT). After spatial normalization to MNI 152 of all rTMS spots, we calculated the error rate (ER) in each cortical area by automated anatomical labeling parcellation (AAL) and used support vector machine (SVM) as a classifier for significant areas in relation to aphasia. 29 of 90 (32.2%) patients suffered from aphasia. Univariate analysis revealed 11 perisylvian AVOIs’ ERs (eight left, three right hemispheric) that were significantly higher in the aphasic than non-aphasic group (p < 0.05), depicting a broad, bihemispheric language network. After feeding the significant AVOIs into the SVM model, it showed that additional to age (w = 2.95), the ERs of right Frontal_Inf_Tri (w = 2.06) and left SupraMarginal (w = 2.05) and Parietal_Inf (w= 1.80) contributed more than other features to the model. The model’s sensitivity was 89.7%, the specificity was 82.0%, the overall accuracy was 81.1% and AUC was 88.7%. Our results demonstrate an increased vulnerability of the right inferior frontal gyrus to rTMS in patients suffering from aphasia due to left perisylvian gliomas. This confirms a functional relevant involvement of the right frontal area in relation to aphasia. While age as a feature improved our SVM model the most, the tumor location feature didn’t affect the SVM model. This finding indicates that general tumor induced network disconnection is relevant to aphasia and not necessarily related to specific lesion locations. Additionally, our results emphasize the decreasing potential for neuroplasticity with age.


2018 ◽  
Author(s):  
Xiaoxiao Zheng ◽  
Lizhu Luo ◽  
Jialin Li ◽  
Lei Xu ◽  
Feng Zhou ◽  
...  

AbstractRomantic jealousy is a complex social emotion combining the different primary emotions of anger, fear and sadness. Previous evidence has suggested the involvement of fronto-striatal dopaminergic circuitry in clinical pathological jealousy, although little is known about overlaps with the neural representation of primary emotions involved in non-morbid jealousy. In the current study, 85 healthy subjects underwent fMRI during resting state and an emotional face recognition paradigm. A total of 150 faces (happy, angry, fearful, sad, neutral) were presented and subjects were required to identify the expression and rate its intensity. Trait romantic jealousy was assessed using the Multidimensional Jealousy Scale. Behavioral results showed that only intensity ratings of angry faces were positively associated with subjects’ jealousy scores. During processing of angry versus neutral expression faces, subjects with higher jealousy scores exhibited greater activation in the right thalamus, insula, fusiform gyrus and hippocampus, left dorsal striatum and superior parietal lobule and bilateral cerebellum and inferior frontal gyrus after controlling for trait aggression and sex. Functional connectivity between the inferior frontal gyrus and caudate was also increased. No associations with resting state functional connectivity were found. Overall, the present study demonstrates an association between romantic jealousy and increased intensity ratings of angry faces as well as in activity and functional connectivity of dorsal striatal-inferior frontal circuitry. Thus, increased emotional responsivity to social threat and enhanced activity in limbic regions and dopaminergic fronto-striatal circuitry may be features of both non-morbid and pathological jealousy.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Pan Pan ◽  
Yan Qiu ◽  
Ziwei Teng ◽  
Sujuan Li ◽  
Jing Huang ◽  
...  

Objectives. Previous researches have demonstrated that abnormal functional connectivity (FC) is associated with the pathophysiology of bipolar disorder (BD). However, inconsistent results were obtained due to different selections of regions of interest in previous researches. This study is aimed at examining voxel-wise brain-wide functional connectivity (FC) alterations in the first-episode, drug-naive patient with BD in an unbiased way. Methods. A total of 35 patients with BD and 37 age-, sex-, and education-matched healthy controls underwent resting-state functional magnetic resonance imaging (rs-fMRI). Global-brain FC (GFC) was applied to analyze the image data. Support vector machine (SVM) was adopted to probe whether GFC abnormalities could be used to identify the patients from the controls. Results. Patients with BD exhibited increased GFC in the left inferior frontal gyrus (LIFG), pars triangularis and left precuneus (PCu)/superior occipital gyrus (SOG). The left PCu belongs to the default mode network (DMN). Furthermore, increased GFC in the LIFG, pars triangularis was positively correlated with the triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) and negatively correlated with the scores of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) coding test and Stroop color. Increased GFC values in the left PCu/SOG can be applied to discriminate patients from controls with preferable sensitivity (80.00%), specificity (75.68%), and accuracy (77.78%). Conclusions. This study found increased GFC in the brain regions of DMN; LIFG, pars triangularis; and LSOG, which was associated with dyslipidemia and cognitive impairment in patients with BD. Moreover, increased GFC values in the left PCu/SOG may be utilized as a potential biomarker to differentiate patients with BD from controls.


2018 ◽  
Vol 51 (6) ◽  
pp. 2694-2703 ◽  
Author(s):  
Wenqing Xia ◽  
Yu-Chen Chen ◽  
Yong Luo ◽  
Dan-Feng Zhang ◽  
Huiyou Chen ◽  
...  

Background/Aims: Type 1 diabetes mellitus (T1DM) has been proven to be associated with an increased risk of cognitive dysfunction. In this study, we aimed to investigate whether disrupted spontaneous activity and functional connectivity (FC) exist in T1DM patients using resting-state functional magnetic resonance imaging (rs-fMRI) and to detect the relationships of these parameters with cognitive impairment. Methods: T1DM patients (n=35) were compared with age-, sex-, and education level-matched healthy controls (n=50) through rs-fMRI. Using rs-fMRI professional software, we calculated the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and seed-based FC in the posterior cingulate cortex (PCC) to measure the spontaneous neural activity in the groups. The relationship between rs-fMRI data and cognitive performance was further investigated. Results: Compared with the healthy controls, T1DM patients showed significantly decreased ALFF values in the PCC and right inferior frontal gyrus (IFG), decreased ReHo values in the right middle frontal gyrus (MFG) and reduced FC between the PCC and the right MFG. Furthermore, a positive correlation was found between decreased ALFF values in the PCC and Rey-Osterrieth Complex Figure Test (CFT)-delay scores in T1DM patients (r=0.394, p=0.026). Moreover, the Trail Making Test-B (TMT-B) scores showed negative correlations with decreased ReHo values in the right MFG (r=-0.468, p=0.007) and reduced FC between the PCC and right MFG (r=-0.425, p=0.015). Conclusion: Our combined analyses revealed decreased spontaneous activity and FC mainly within the default mode network, which was correlated with specific impaired cognitive functioning in T1DM. This study thus elucidates the neurophysiological mechanisms underlying T1DM-related cognitive impairment and may serve as a reference for future clinical diagnosis.


Sign in / Sign up

Export Citation Format

Share Document