scholarly journals Interferon-stimulated and metallothionein-expressing macrophages are associated with acute and chronic allograft dysfunction after lung transplantation

2021 ◽  
Author(s):  
Sajad Moshkelgosha ◽  
Allen Duong ◽  
Gavin Wilson ◽  
Tallulah Andrews ◽  
Gregory Berra ◽  
...  

Lung transplant (LT) recipients experience episodes of immune-mediated acute lung allograft dysfunction (ALAD). ALAD episodes are a risk factor for chronic lung allograft dysfunction (CLAD), the major cause of death after LT. We have applied single-cell RNA sequencing (scRNAseq) to bronchoalveolar lavage (BAL) cells from stable and ALAD patients and to cells from explanted CLAD lung tissue to determine key cellular elements in dysfunctional lung allografts, with a focus on macrophages. We identified two alveolar macrophage (AM) subsets uniquely represented in ALAD. Using pathway analysis and differentially expressed genes, we annotated these as pro-inflammatory interferon-stimulated gene (ISG) and metallothionein-mediated inflammatory (MT) AMs. Functional analysis of an independent set of AMs in vitro revealed that ALAD AMs exhibited a higher expression of CXCL10, a marker of ISG AMs, and increased secretion of pro-inflammatory cytokines compared to AMs from stable patients. Using publicly available BAL scRNAseq datasets, we found that ISG and MT AMs are associated with more severe inflammation in COVID-19 patients. Analysis of cells from four explanted CLAD lungs revealed similar macrophage populations. Using a single nucleotide variation calling algorithm, we also demonstrate contributions of donor and recipient cells to all AM subsets early post-transplant, with loss of donor-derived cells over time. Our data reveals extensive heterogeneity among lung macrophages after LT and indicates that specific sub-populations may be associated with allograft dysfunction, raising the possibility that these cells may represent important therapeutic targets.

2021 ◽  
Author(s):  
Sajad Moshkelgosha ◽  
Gavin Wilson ◽  
Allen Duong ◽  
Tallulah Andrews ◽  
Gregory Berra ◽  
...  

AbstractPurposeLung transplant (LT) recipients experience episodes of immune-mediated acute lung allograft dysfunction (ALAD). We have applied single-cell RNA sequencing (scRNAseq) to bronchoalveolar lavage (BAL) cells of stable and ALAD patients to determine key cellular elements in dysfunctional lung allografts. Our particular focus here is on studying alveolar macrophages (AMs) as scRNAseq enables us to elucidate their heterogeneity and possible association with ALAD where our knowledge from cytometry-based assays is very limited.MethodsFresh bronchoalveolar lavage (BAL) cells from 6 LT patients, 3 with stable lung function (3044 ± 1519 cells) and 3 undergoing an episode of ALAD (2593 ± 904 cells) were used for scRNAseq. R Bioconductor and Seurat were used to perform QC, dimensionality reduction, annotation, pathway analysis, and trajectory. Donor and recipient deconvolution was performed using single nucleotide variations.ResultsOur data revealed that AMs are highly heterogeneous (12 transcriptionally distinct subsets in stable). We identified two AM subsets uniquely represented in ALAD. Based on pathway analysis and the top differentially expressed genes in BAL we annotated them as pro-inflammatory interferon-stimulated genes (ISG) and metallothioneins-mediated inflammatory (MT). Pseudotime analysis suggested that ISG AMs represent an earlier stage of differentiation which may suggest them as monocyte drive macrophages. Our functional analysis on an independent set of BAL samples shows that ALAD samples have significantly higher expression of CXCL10, a marker of ISG AM, as we as higher secretion of pro-inflammatory cytokines. Single nucleotide variation calling algorithm has allowed us to identify macrophages of donor origin and demonstrated that donor AMs are lost with time post-transplant.ConclusionUsing scRNAseq, we observed AMs heterogeneity and identified specific subsets that may be associated with allograft dysfunction. Further exploration with scRNAseq will shed light on LT immunobiology and the role of AMs in allograft injury and dysfunction.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3707-3707 ◽  
Author(s):  
Vinod K. Gidvani ◽  
Shakti H. Ramkissoon ◽  
Elaine W. Wong ◽  
Lori Mainwaring ◽  
Elaine M. Sloand ◽  
...  

Abstract Some acquired aplastic anemia (AA) results from immune mediated destruction of the hematopoetic stem cells. Immunosuppressive therapy is successful in majority of AA patients and substantial laboratory data are consistent with an immune pathophysiology. Substantial research has implicated differences in cytokine gene expression profiles and polymorphisms in the genes controlling cytokine expression in other autoimmune diseases such as lupus erythematosus and rheumatoid arthritis. Interlukin-6 (IL-6) and tumor necrosis alpha (TNF-α) are two potent pro-inflammatory cytokines that have implicated in a variety of immune-mediated conditions. TNF-α results in Fas expression and apoptosis of in progenitor cells and the TNF-alpha −308 allele was significantly associated with SLE in Caucasians. Levels both IL-6 and TNF-α have been reported elevated in AA patients. In the promoter region of the IL-6 gene, at position −174, exists a single nucleotide polymorphism (G/C) in close proximity to a glucocorticoid-responsive element; patients homozygous for the G allele have circulating IL-6 concentrations close to twice as high as those homozygous for the C allele. The TNF-α gene, located in the class III region of the major histocompatibility complex (MHC), has a polymorphism at position −308, TNF2, where the presence of adenine instead of guanine is associated with higher cytokine production. In our study, we characterized the IL-6/−174 and the TNF-α/−308 polymorphisms in patients with acquired bone marrow failure syndromes to assess if the higher production genotypes were more prevalent that in established controls. We identified seventy-three patients (age range 3–84) treated at our institution for AA. Following an established protocol for the identification of single nucleotide polymorphisms, genomic DNA was amplified with primers designed for the promoter regions of the IL-6 and TNF-α genes where intentional mismatches were inserted at 1–3 nucleotide positions to incorporate a restriction site for endonucleases. The amplicons were digested with four restriction endonucleases (BlsI, BsaBI, EcoNI, RsaI) then analyzed by electrophoresis in 3% agarose gels. The resulting fragments allowed for the identification and confirmation of the specific nucleotide polymorphism at the 174 and 308 position of the IL-6 and TNF-α promoter, respectively. The frequency of the high cytokine producing genotypes in the cohort was compared to established controls and the statistical significance determined by the two-tailed Fishers exact test. The GG genotype of the IL-6/−174 polymorphism was present in 32 of 73 (44%) of affected patients versus 80 of 250 (32%) historical controls of the control population (p =0.0698) while the AA genotype of the TNF-α/−308 polymorphism was found in 8 of 73 AA patients (11%) and in only 9 of 354 historical controls (2.5%) (p= 0.0034). Three of 73 AA patients had both gene polymophisms p<0.0001. Two patients’ BM was cultured and ELISA performed for TNF-α as part of a larger study, which included 20 normal controls and 30 patients with marrow failure; both of these patients demonstrated significant elevations in TNF-α. In conclusion, we showed that some patients with acquired bone marrow failure have cytokine gene polymophisms which are linked to high production of pro-inflammatory cytokines, particularly TNF-α.


2008 ◽  
Vol 60 (3) ◽  
pp. 389-401 ◽  
Author(s):  
Ivana Stojanovic ◽  
Danijela Maksimovic-Ivanic ◽  
Y. Al-Abed ◽  
F. Nicoletti ◽  
Stanislava Stosic-Grujicic

We recently showed that attenuation of inflammatory cytokine MIF with pharmacological inhibitor ISO-1 down-regulates the immune-mediated diabetes in mice. Here we explore the effects of MIF neutralization by ISO-1 on the local inflammatory pathway of the disease. In vivo treatment of mice with ISO-1 inhibited the expression of pro-inflammatory cytokines and iNOS in the pancreatic islets. Moreover, ISO-1 affected in vitro cytokine-induced NO pro?duction by fibroblasts, endothelial cells, insulinoma cells, and pancreatic islets, and rescued ? cells from NO-dependent damage. These results suggest regulatory potential of ISO-1 at the level of the pancreas which can preserve the target tissue from autoimmune attack.


1996 ◽  
Vol 76 (05) ◽  
pp. 774-779 ◽  
Author(s):  
John T Brandt ◽  
Carmen J Julius ◽  
Jeanne M Osborne ◽  
Clark L Anderson

SummaryImmune-mediated platelet activation is emerging as an important pathogenic mechanism of thrombosis. In vitro studies have suggested two distinct pathways for immune-mediated platelet activation; one involving clustering of platelet FcyRIIa, the other involving platelet-associated complement activation. HLA-related antibodies have been shown to cause platelet aggregation, but the mechanism has not been clarified. We evaluated the mechanism of platelet aggregation induced by HLA-related antibodies from nine patients. Antibody to platelet FcyRIIa failed to block platelet aggregation with 8/9 samples, indicating that engagement of platelet FcyRIIa is not necessary for the platelet aggregation induced by HLA-related antibodies. In contrast, platelet aggregation was blocked by antibodies to human C8 (5/7) or C9 (7/7). F(ab’)2 fragments of patient IgG failed to induce platelet activation although they bound to HLA antigen on platelets. Intact patient IgG failed to aggregate washed platelets unless aged serum was added. The activating IgG could be adsorbed by incubation with lymphocytes and eluted from the lymphocytes. These results indicate that complement activation is involved in the aggregation response to HLA-related antibodies. This is the first demonstration of complement-mediated platelet aggregation by clinical samples. Five of the patients developed thrombocytopenia in relationship to blood transfusion and two patients developed acute thromboembolic disease, suggesting that these antibodies and the complement-dependent pathway of platelet aggregation may be of clinical significance.


2020 ◽  
Vol 35 (3) ◽  
pp. 233-238
Author(s):  
Muflihatul Muniroh

AbstractThe exposure of methylmercury (MeHg) has become a public health concern because of its neurotoxic effect. Various neurological symptoms were detected in Minamata disease patients, who got intoxicated by MeHg, including paresthesia, ataxia, gait disturbance, sensory disturbances, tremors, visual, and hearing impairments, indicating that MeHg could pass the blood-brain barrier (BBB) and cause impairment of neurons and other brain cells. Previous studies have reported some expected mechanisms of MeHg-induced neurotoxicity including the neuroinflammation pathway. It was characterized by the up-regulation of numerous pro-inflammatory cytokines expression. Therefore, the use of anti-inflammatories such as N-acetyl-l-cysteine (NAC) may act as a preventive compound to protect the brain from MeHg harmful effects. This mini-review will explain detailed information on MeHg-induced pro-inflammatory cytokines activation as well as possible preventive strategies using anti-inflammation NAC to protect brain cells, particularly in in vivo and in vitro studies.


2021 ◽  
Vol 91 ◽  
pp. 107270
Author(s):  
Caroline B.K. Mathiesen ◽  
Asha M. Rudjord-Levann ◽  
Monika Gad ◽  
Jesper Larsen ◽  
Finn Sellebjerg ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Christopher C. Evans ◽  
Katherine M. Day ◽  
Yi Chu ◽  
Bridget Garner ◽  
Kaori Sakamoto ◽  
...  

Abstract Background The Mongolian jird (Meriones unguiculatus) has long been recognized as a permissive host for the filarial parasite Brugia malayi; however, it is nonpermissive to another filarial parasite, canine heartworm (Dirofilaria immitis). By elucidating differences in the early response to infection, we sought to identify mechanisms involved in the species-specific clearance of these parasites. We hypothesized that the early clearance of D. immitis in intraperitoneal infection of the jird is immune mediated and parasite species dependent. Methods Jird peritoneal exudate cells (PECs) were isolated and their attachment to parasite larvae assessed in vitro under various conditions: D. immitis and B. malayi cultured separately, co-culture of both parasites, incubation before addition of cells, culture of heat-killed parasites, and culture with PECs isolated from jirds with mature B. malayi infection. The cells attaching to larvae were identified by immunohistochemistry. Results In vitro cell attachment to live D. immitis was high (mean = 99.6%) while much lower for B. malayi (mean = 5.56%). This species-specific attachment was also observed when both filarial species were co-cultured, with no significant change from controls (U(9, 14) = 58.5, p = 0.999). When we replicated these experiments with PECs derived from jirds subcutaneously infected with B. malayi, the results were similar (99.4% and 4.72% of D. immitis and B. malayi, respectively, exhibited cell attachment). Heat-killing the parasites significantly reduced cell attachment to D. immitis (mean = 71.9%; U(11, 14) = 7.5, p < 0.001) while increasing attachment to B. malayi (mean = 16.7%; U(9, 15) = 20, p = 0.002). Cell attachment to both species was reduced when larvae were allowed a 24-h pre-incubation period prior to the addition of cells. The attaching cells were identified as macrophages by immunohistochemistry. Conclusions These results suggest a strongly species-dependent response from which B. malayi could not confer protection by proxy in co-culture. The changes in cell attachment following heat-killing and pre-incubation suggest a role for excretory/secretory products in host immune evasion and/or antigenicity. The nature of this attachment is the subject of ongoing study and may provide insight into filarial host specificity.


Author(s):  
Xin Qiao ◽  
Yanmin Gao ◽  
Jiaojiao Li ◽  
Zhaoguan Wang ◽  
Hongyan Qiao ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Laura Costantini ◽  
Paula Moreno-Sanz ◽  
Chinedu Charles Nwafor ◽  
Silvia Lorenzi ◽  
Annarita Marrano ◽  
...  

Abstract Background Grapevine reproductive development has direct implications on yield. It also impacts on berry and wine quality by affecting traits like seedlessness, berry and bunch size, cluster compactness and berry skin to pulp ratio. Seasonal fluctuations in yield, fruit composition and wine attributes, which are largely driven by climatic factors, are major challenges for worldwide table grape and wine industry. Accordingly, a better understanding of reproductive processes such as gamete development, fertilization, seed and fruit set is of paramount relevance for managing yield and quality. With the aim of providing new insights into this field, we searched for clones with contrasting seed content in two germplasm collections. Results We identified eight variant pairs that seemingly differ only in seed-related characteristics while showing identical genotype when tested with the GrapeReSeq_Illumina_20K_SNP_chip and several microsatellites. We performed multi-year observations on seed and fruit set deriving from different pollination treatments, with special emphasis on the pair composed by Sangiovese and its seedless variant locally named Corinto Nero. The pollen of Corinto Nero failed to germinate in vitro and gave poor berry set when used to pollinate other varieties. Most berries from both open- and cross-pollinated Corinto Nero inflorescences did not contain seeds. The genetic analysis of seedlings derived from occasional Corinto Nero normal seeds revealed that the few Corinto Nero functional gametes are mostly unreduced. Moreover, three genotypes, including Sangiovese and Corinto Nero, were unexpectedly found to develop fruits without pollen contribution and occasionally showed normal-like seeds. Five missense single nucleotide polymorphisms were identified between Corinto Nero and Sangiovese from transcriptomic data. Conclusions Our observations allowed us to attribute a seedlessness type to some variants for which it was not documented in the literature. Interestingly, the VvAGL11 mutation responsible for Sultanina stenospermocarpy was also discovered in a seedless mutant of Gouais Blanc. We suggest that Corinto Nero parthenocarpy is driven by pollen and/or embryo sac defects, and both events likely arise from meiotic anomalies. The single nucleotide polymorphisms identified between Sangiovese and Corinto Nero are suitable for testing as traceability markers for propagated material and as functional candidates for the seedless phenotype.


Sign in / Sign up

Export Citation Format

Share Document