scholarly journals Cerebellar Control of a Unitary Head Direction Sense

2021 ◽  
Author(s):  
Mehdi Fallahnezhad ◽  
Julia Le Mero ◽  
Xhensjana Zenelaj ◽  
Jean Vincent ◽  
Christelle Rochefort ◽  
...  

Head direction (HD) cells, key neuronal elements in the mammalian's navigation system, are hypothesized to act as a continuous attractor network, in which temporal coordination between cell members is maintained under different brain states or external sensory conditions, resembling a unitary neural representation of direction. Whether and how multiple identified HD signals in anatomically separate HD cell structures are part of a single and unique attractor network is currently unknown. By manipulating the cerebellum, we identified pairs of thalamic and retrosplenial HD cells that lose their temporal coordination in the absence of external sensory drive, while the neuronal coordination within each of these brain regions remained intact. Further, we show that distinct cerebellar mechanisms are involved in the stability of direction representation depending on external sensory conditions. These results put forward a new role for the cerebellum in mediating stable and coordinated HD neuronal activity toward a unitary thalamocortical representation of direction.

2021 ◽  
Vol 22 (9) ◽  
pp. 4822
Author(s):  
Viktória Kovács ◽  
Gábor Remzső ◽  
Tímea Körmöczi ◽  
Róbert Berkecz ◽  
Valéria Tóth-Szűki ◽  
...  

Hypoxic–ischemic encephalopathy (HIE) remains to be a major cause of long-term neurodevelopmental deficits in term neonates. Hypothermia offers partial neuroprotection warranting research for additional therapies. Kynurenic acid (KYNA), an endogenous product of tryptophan metabolism, was previously shown to be beneficial in rat HIE models. We sought to determine if the KYNA analog SZR72 would afford neuroprotection in piglets. After severe asphyxia (pHa = 6.83 ± 0.02, ΔBE = −17.6 ± 1.2 mmol/L, mean ± SEM), anesthetized piglets were assigned to vehicle-treated (VEH), SZR72-treated (SZR72), or hypothermia-treated (HT) groups (n = 6, 6, 6; Tcore = 38.5, 38.5, 33.5 °C, respectively). Compared to VEH, serum KYNA levels were elevated, recovery of EEG was faster, and EEG power spectral density values were higher at 24 h in the SZR72 group. However, instantaneous entropy indicating EEG signal complexity, depression of the visual evoked potential (VEP), and the significant neuronal damage observed in the neocortex, the putamen, and the CA1 hippocampal field were similar in these groups. In the caudate nucleus and the CA3 hippocampal field, neuronal damage was even more severe in the SZR72 group. The HT group showed the best preservation of EEG complexity, VEP, and neuronal integrity in all examined brain regions. In summary, SZR72 appears to enhance neuronal activity after asphyxia but does not ameliorate early neuronal damage in this HIE model.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Susumu Takahashi ◽  
Takumi Hombe ◽  
Riku Takahashi ◽  
Kaoru Ide ◽  
Shinichiro Okamoto ◽  
...  

Abstract Background Salmonids return to the river where they were born in a phenomenon known as mother-river migration. The underpinning of migration has been extensively examined, particularly regarding the behavioral correlations of external environmental cues such as the scent of the mother-river and geomagnetic compass. However, neuronal underpinning remains elusive, as there have been no biologging techniques suited to monitor neuronal activity in the brain of large free-swimming fish. In this study, we developed a wireless biologging system to record extracellular neuronal activity in the brains of free-swimming salmonids. Results Using this system, we recorded multiple neuronal activities from the telencephalon of trout swimming in a rectangular water tank. As proof of principle, we examined the activity statistics for extracellular spike waveforms and timing. We found cells firing maximally in response to a specific head direction, similar to the head direction cells found in the rodent brain. The results of our study suggest that the recorded signals originate from neurons. Conclusions We anticipate that our biologging system will facilitate a more detailed investigation into the neural underpinning of fish movement using internally generated information, including responses to external cues.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Catalina Alvarado-Rojas ◽  
Michel Le Van Quyen

Little is known about the long-term dynamics of widely interacting cortical and subcortical networks during the wake-sleep cycle. Using large-scale intracranial recordings of epileptic patients during seizure-free periods, we investigated local- and long-range synchronization between multiple brain regions over several days. For such high-dimensional data, summary information is required for understanding and modelling the underlying dynamics. Here, we suggest that a compact yet useful representation is given by a state space based on the first principal components. Using this representation, we report, with a remarkable similarity across the patients with different locations of electrode placement, that the seemingly complex patterns of brain synchrony during the wake-sleep cycle can be represented by a small number of characteristic dynamic modes. In this space, transitions between behavioral states occur through specific trajectories from one mode to another. These findings suggest that, at a coarse level of temporal resolution, the different brain states are correlated with several dominant synchrony patterns which are successively activated across wake-sleep states.


2021 ◽  
Author(s):  
Beatrice M. Jobst ◽  
Selen Atasoy ◽  
Adrián Ponce-Alvarez ◽  
Ana Sanjuán ◽  
Leor Roseman ◽  
...  

AbstractLysergic acid diethylamide (LSD) is a potent psychedelic drug, which has seen a revival in clinical and pharmacological research within recent years. Human neuroimaging studies have shown fundamental changes in brain-wide functional connectivity and an expansion of dynamical brain states, thus raising the question about a mechanistic explanation of the dynamics underlying these alterations. Here, we applied a novel perturbational approach based on a whole-brain computational model, which opens up the possibility to externally perturb different brain regions in silico and investigate differences in dynamical stability of different brain states, i.e. the dynamical response of a certain brain region to an external perturbation. After adjusting the whole-brain model parameters to reflect the dynamics of functional magnetic resonance imaging (fMRI) BOLD signals recorded under the influence of LSD or placebo, perturbations of different brain areas were simulated by either promoting or disrupting synchronization in the regarding brain region. After perturbation offset, we quantified the recovery characteristics of the brain area to its basal dynamical state with the Perturbational Integration Latency Index (PILI) and used this measure to distinguish between the two brain states. We found significant changes in dynamical complexity with consistently higher PILI values after LSD intake on a global level, which indicates a shift of the brain’s global working point further away from a stable equilibrium as compared to normal conditions. On a local level, we found that the largest differences were measured within the limbic network, the visual network and the default mode network. Additionally, we found a higher variability of PILI values across different brain regions after LSD intake, indicating higher response diversity under LSD after an external perturbation. Our results provide important new insights into the brain-wide dynamical changes underlying the psychedelic state - here provoked by LSD intake - and underline possible future clinical applications of psychedelic drugs in particular psychiatric disorders.HighlightsNovel offline perturbational method applied on functional magnetic resonance imaging (fMRI) data under the effect of lysergic acid diethylamide (LSD)Shift of brain’s global working point to more complex dynamics after LSD intakeConsistently longer recovery time after model perturbation under LSD influenceStrongest effects in resting state networks relevant for psychedelic experienceHigher response diversity across brain regions under LSD influence after an external in silico perturbation


2021 ◽  
Vol 7 (25) ◽  
pp. eabg4693
Author(s):  
Yangfan Peng ◽  
Federico J. Barreda Tomas ◽  
Paul Pfeiffer ◽  
Moritz Drangmeister ◽  
Susanne Schreiber ◽  
...  

In cortical microcircuits, it is generally assumed that fast-spiking parvalbumin interneurons mediate dense and nonselective inhibition. Some reports indicate sparse and structured inhibitory connectivity, but the computational relevance and the underlying spatial organization remain unresolved. In the rat superficial presubiculum, we find that inhibition by fast-spiking interneurons is organized in the form of a dominant super-reciprocal microcircuit motif where multiple pyramidal cells recurrently inhibit each other via a single interneuron. Multineuron recordings and subsequent 3D reconstructions and analysis further show that this nonrandom connectivity arises from an asymmetric, polarized morphology of fast-spiking interneuron axons, which individually cover different directions in the same volume. Network simulations assuming topographically organized input demonstrate that such polarized inhibition can improve head direction tuning of pyramidal cells in comparison to a “blanket of inhibition.” We propose that structured inhibition based on asymmetrical axons is an overarching spatial connectivity principle for tailored computation across brain regions.


2018 ◽  
Author(s):  
M. Ruttorf ◽  
S. Kristensen ◽  
L.R. Schad ◽  
J. Almeida

AbstractTranscranial direct current stimulation (tDCS) is routinely used in basic and clinical research, but its efficacy has been challenged on a methodological and statistical basis recently. The arguments against tDCS derive from insufficient understanding of how this technique interacts with brain processes physiologically. Because of its potential as a central tool in neuroscience, it is important to clarify whether and how tDCS affects neuronal activity. Here, we investigate influences of offline tDCS on network architecture measured by functional magnetic resonance imaging. Our results reveal a tDCS-induced reorganisation of a functionally-defined network that is dependent on whether we are exciting or inhibiting a node within this network, confirming in a functioning brain, and in a bias free and independent fashion that tDCS influences neuronal activity. Moreover, our results suggest that network-specific connectivity has an important role in defining the effects of tDCS and the relationship between brain states and behaviour.


2010 ◽  
Vol 104 (1) ◽  
pp. 539-547 ◽  
Author(s):  
Andrea Insabato ◽  
Mario Pannunzi ◽  
Edmund T. Rolls ◽  
Gustavo Deco

Neurons have been recorded that reflect in their firing rates the confidence in a decision. Here we show how this could arise as an emergent property in an integrate-and-fire attractor network model of decision making. The attractor network has populations of neurons that respond to each of the possible choices, each biased by the evidence for that choice, and there is competition between the attractor states until one population wins the competition and finishes with high firing that represents the decision. Noise resulting from the random spiking times of individual neurons makes the decision making probabilistic. We also show that a second attractor network can make decisions based on the confidence in the first decision. This system is supported by and accounts for neuronal responses recorded during decision making and makes predictions about the neuronal activity that will be found when a decision is made about whether to stay with a first decision or to abort the trial and start again. The research shows how monitoring can be performed in the brain and this has many implications for understanding cognitive functioning.


2002 ◽  
Vol 94 (3) ◽  
pp. 841-850 ◽  
Author(s):  
George Grouios

A case of phantom smelling (phantosmia) is described in a 28-yr.-old man who developed permanent bilateral anosmia after a serious injury to olfaction-related brain structures at the age of 25 years. The findings indicate that, even years after loss of input from olfactory receptors, the neural representation of olfactory perception can still recreate olfactory sensations without any conscious recall of them. This indicates that the neural representation of olfactory sensations remains functional and implies that neuronal activity in the olfactory organ or in other brain structures gives rise to olfactory experiences perceived as originating from the perception of original odor substances. The report suggests the intriguing possibility that the olfactory perception is not a passive process that merely reflects its normal input from the olfactory system but is continuously generated by a neural representation in the olfactory organ or in other olfaction-related brain structures, based on both genetic and sensory determinants. To the author's knowledge this is the first reported case of its kind.


2000 ◽  
Vol 278 (3) ◽  
pp. R620-R627
Author(s):  
Xinzheng Xi ◽  
Linda A. Toth

Peripheral administration of lipopolysaccharide (LPS) is associated with alterations in sleep and the electroencephalogram. To evaluate potential neuronal mechanisms for the somnogenic effects of LPS administration, we used unanesthetized rats to survey the firing patterns of neurons in various regions of rat basal forebrain (BF) and hypothalamus during spontaneous sleep and waking and during the epochs of sleep and waking that occurred after the intraperitoneal administration of LPS. In the brain regions studied, LPS administration was associated with altered firing rates in 39% of the neurons examined. A larger proportion of LPS-responsive units showed vigilance-related alterations in firing rates compared with nonresponsive units. Approximately equal proportions of LPS-responsive neurons showed increased and decreased firing rates after LPS administration, with some units in the lateral preoptic area of the hypothalamus showing particularly robust increases. These findings are consistent with other studies showing vigilance-related changes in neuronal activity in various regions of BF and hypothalamus and further demonstrate that peripheral LPS administration alters neuronal firing rates in these structures during both sleep and waking.


Sign in / Sign up

Export Citation Format

Share Document