scholarly journals Inflammation-Related Mechanisms in Chronic Kidney Disease Prediction, Progression, and Outcome

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Simona Mihai ◽  
Elena Codrici ◽  
Ionela Daniela Popescu ◽  
Ana-Maria Enciu ◽  
Lucian Albulescu ◽  
...  

Persistent, low-grade inflammation is now considered a hallmark feature of chronic kidney disease (CKD), being involved in the development of all-cause mortality of these patients. Although substantial improvements have been made in clinical care, CKD remains a major public health burden, affecting 10–15% of the population, and its prevalence is constantly growing. Due to its insidious nature, CKD is rarely diagnosed in early stages, and once developed, its progression is unfortunately irreversible. There are many factors that contribute to the setting of the inflammatory status in CKD, including increased production of proinflammatory cytokines, oxidative stress and acidosis, chronic and recurrent infections, altered metabolism of adipose tissue, and last but not least, gut microbiota dysbiosis, an underestimated source of microinflammation. In this scenario, a huge step forward was made by the increasing progression of omics approaches, specially designed for identification of biomarkers useful for early diagnostic and follow-up. Recent omics advances could provide novel insights in deciphering the disease pathophysiology; thus, identification of circulating biomarker panels using state-of-the-art proteomic technologies could improve CKD early diagnosis, monitoring, and prognostics. This review aims to summarize the recent knowledge regarding the relationship between inflammation and CKD, highlighting the current proteomic approaches, as well as the inflammasomes and gut microbiota dysbiosis involvement in the setting of CKD, culminating with the troubling bidirectional connection between CKD and renal malignancy, raised on the background of an inflammatory condition.

2021 ◽  
Author(s):  
Yang Liu ◽  
Wei Xiao ◽  
Leilei Yu ◽  
Fengwei Tian ◽  
Gang Wang ◽  
...  

Irritable bowel syndrome (IBS) is a chronic intestinal disorder accompanied by low-grade inflammation, visceral hypersensitivity, and gut microbiota dysbiosis. Several studies have indicated that Lactobacillus supplementation can help to alleviate...


2018 ◽  
Vol 96 (4) ◽  
pp. 314-320
Author(s):  
K. A. Aitbaev ◽  
Ilkhom T. Murkamilov ◽  
V. V. Fomin ◽  
J. A. Murkamilova ◽  
Z. R. Rayimzhanov ◽  
...  

The role of various factors contributing to the development of systemic persistent low-grade inflammation in chronic kidney disease (CKD) is considered. It is reported that inflammation in patients with CKD is directly correlated with the glomerular filtration rate (GFR) and culminates in the terminal stage of renal failure, where extracorporeal factors such as dialysate contaminants, dialysate microbiological quality and the biocompatibility of factors in the dialysis chain play an additional role. The effectiveness of therapeutic interventions aimed at correcting inflammation in patients with CKD is discussed. Further investigations are needed to evaluate the effects of these interventions on hard outcomes, as well as to better understand the role of inflammation in selected CKD populations, particularly in children.


2021 ◽  
Author(s):  
Beate Vestad ◽  
Thor Ueland ◽  
Tori Vigeland Lerum ◽  
Tuva B Dahl ◽  
Kristian Holm ◽  
...  

Objective: Although COVID-19 is primarily a respiratory infection, mounting evidence suggests that the GI tract is involved in the disease, with gut barrier dysfunction and gut microbiota alterations being related to disease severity. Whether these alterations persist and could be related to long-term respiratory dysfunction is unknown. Design: From the NOR-Solidarity trial (n=181), plasma was collected during hospital admission and after three months, and analyzed for markers of gut barrier dysfunction and inflammation. At the three-month follow-up, pulmonary function was assessed by measuring diffusing capacity of the lungs for carbon monoxide (DLCO), and rectal swabs for gut microbiota analyses were collected (n= 97) and analysed by sequencing of the 16S rRNA gene. Results: Gut microbiota diversity was reduced in COVID-19 patients with persistent respiratory dysfunction, defined as DLCO below lower limit of normal three months after hospitalization. These patients also had an altered global gut microbiota composition, with reduced abundance of Erysipelotrichaceae UCG-003 and increased abundance of Flavonifractor and Veillonella, the latter potentially being linked to fibrosis. During hospitalization, increased plasma levels of lipopolysaccharide-binding protein (LBP) were strongly associated with respiratory failure, defined as pO2/fiO2-(P/F-ratio)<26.6 kPa. LBP levels remained elevated during and after hospitalization, and was associated with low-grade inflammation and persistent respiratory dysfunction after three months. Conclusion: Persistent respiratory dysfunction after COVID-19 is associated with reduced biodiversity and gut microbiota alterations, along with persistently elevated LBP levels. Our results point to a potential gut-lung axis that should be further investigated in relation to long-term pulmonary dysfunction and long COVID.


2020 ◽  
Vol 106 (1) ◽  
pp. 143-152
Author(s):  
Lilian Fernandes Silva ◽  
Jagadish Vangipurapu ◽  
Ulf Smith ◽  
Markku Laakso

Abstract Objective To investigate the metabolite signature of albuminuria in individuals without diabetes or chronic kidney disease to identify possible mechanisms that result in increased albuminuria and elevated risk of type 2 diabetes (T2D). Research Design and Methods The study cohort was a population-based Metabolic Syndrome In Men (METSIM) study including 8861 middle-aged and elderly Finnish men without diabetes or chronic kidney disease at baseline. A total of 5504 men participated in a 7.5-year follow-up study, and 5181 of them had metabolomics data measured by Metabolon’s ultrahigh performance liquid chromatography-tandem mass spectroscopy. Results We found 32 metabolites significantly (P &lt; 5.8 × 10-5) and positively associated with the urinary albumin excretion (UAE) rate. These metabolites were especially downstream metabolites in the amino acid metabolism pathways (threonine, phenylalanine, leucine, arginine). In our 7.5-year follow-up study, UAE was significantly associated with a 19% increase (hazard ratio 1.19; 95% confidence interval, 1.13–1.25) in the risk of T2D after the adjustment for confounding factors. Conversion to diabetes was more strongly associated with a decrease in insulin secretion than a decrease in insulin sensitivity. Conclusions Metabolic signature of UAE included multiple metabolites, especially from the amino acid metabolism pathways known to be associated with low-grade inflammation, and accumulation of reactive oxygen species that play an important role in the pathogenesis of UAE. These metabolites were primarily associated with an increase in UAE and were secondarily associated with a decrease in insulin secretion and insulin sensitivity, resulting in an increased risk of incident T2D.


2018 ◽  
Vol 11 ◽  
pp. 117955141879225 ◽  
Author(s):  
Constantine E Kosmas ◽  
Delia Silverio ◽  
Christiana Tsomidou ◽  
Maria D Salcedo ◽  
Peter D Montan ◽  
...  

There is extensive evidence showing that insulin resistance (IR) is associated with chronic low-grade inflammation. Furthermore, IR has been shown to increase the risk for cardiovascular disease (CVD), even in nondiabetic patients, and is currently considered as a “nontraditional” risk factor contributing to CVD by promoting hypertension, oxidative stress, endothelial dysfunction, dyslipidemia, and type 2 diabetes mellitus. However, chronic kidney disease (CKD) is also considered a state of low-grade inflammation. In addition, CKD is considered an IR state and has been described as an independent risk factor for the development of CVD, as even early-stage CKD is associated with an estimated 40% to 100% increase in CVD risk. There is also strong evidence indicating that inflammation per se plays a crucial role in both the initiation and progression of CVD. Given the above, the combined effect of IR and CKD may significantly increase the risk of inflammation and CVD. This review aims to focus on the complex interplay between IR, CKD, inflammation, and CVD and will present and discuss the current clinical and scientific data pertaining to the impact of IR and CKD on inflammation and CVD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yueming Li ◽  
Minhui Dai ◽  
Jianqin Yan ◽  
Fang Liu ◽  
Xi Wang ◽  
...  

AbstractChronic kidney disease (CKD) is a major public health burden around the world. The gut microbiome may contribute to CKD progression and serve as a promising therapeutic target. Colonic dialysis has long been used in China to help remove gut-derived toxins to delay CKD progression. Since disturbances in the gut biome may influence disease progression, we wondered whether colonic dialysis may mitigate the condition by influencing the biome. We compared the gut microbiota, based on 16S rRNA gene sequencing, in fecal samples of 25 patients with CKD (stages 3–5) who were receiving colonic dialysis(group CD), 25 outpatients with CKD not receiving colonic dialysis(group OP), and 34 healthy subjects(group HS). Richness of gut microbiota was similar between patients on colonic dialysis and healthy subjects, and richness in these two groups was significantly higher than that in patients not on colonic dialysis. Colonic dialysis also altered the profile of microbes in the gut of CKD patients, bringing it closer to the profile in healthy subjects. Colonic dialysis may protect renal function in pre-dialysis CKD by mitigating dysbiosis of gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document