scholarly journals Reconstruction of a generic genome-scale metabolic network for chicken: investigating network connectivity and finding potential biomarkers

2021 ◽  
Author(s):  
Ehsan Salehabadi ◽  
Ehsan Motamedian ◽  
Seyed Abbas Shojaosadati

Chicken is the first sequenced avian that has a crucial role in human life for its meat and egg production. Because of various metabolic disorders, study the metabolism of chicken cell is important. Herein, the first genome-scale metabolic model of a chicken cell named iES1300, consists of 2427 reactions, 2569 metabolites, and 1300 genes, was reconstructed manually based on databases. Interactions of metabolic genes for growth were examined for E. coli , S. cerevisiae , human, and chicken metabolic models. The results indicated robustness to genetic manipulation for iES1300 similar to the results for human. iES1300 was integrated with transcriptomics data using algorithms and Principal Component Analysis was applied to compare context-specific models of the normal, tumor, lean and fat cell lines. It was found that the normal model has notable metabolic flexibility in the utilization of various metabolic pathways, especially in metabolic pathways of the carbohydrate metabolism, compared to the others. It was also concluded that the fat and tumor models have similar growth metabolisms and the lean chicken model has a more active lipid and carbohydrate metabolism.

Author(s):  
Kusum Dhakar ◽  
Raphy Zarecki ◽  
Daniella van Bommel ◽  
Nadav Knossow ◽  
Shlomit Medina ◽  
...  

Phenyl urea herbicides are being extensively used for weed control in both agricultural and non-agricultural applications. Linuron is one of the key herbicides in this family and is in wide use. Like other phenyl urea herbicides, it is known to have toxic effects as a result of its persistence in the environment. The natural removal of linuron from the environment is mainly carried through microbial biodegradation. Some microorganisms have been reported to mineralize linuron completely and utilize it as a carbon and nitrogen source. Variovorax sp. strain SRS 16 is one of the known efficient degraders with a recently sequenced genome. The genomic data provide an opportunity to use a genome-scale model for improving biodegradation. The aim of our study is the construction of a genome-scale metabolic model following automatic and manual protocols and its application for improving its metabolic potential through iterative simulations. Applying flux balance analysis (FBA), growth and degradation performances of SRS 16 in different media considering the influence of selected supplements (potential carbon and nitrogen sources) were simulated. Outcomes are predictions for the suitable media modification, allowing faster degradation of linuron by SRS 16. Seven metabolites were selected for in vitro validation of the predictions through laboratory experiments confirming the degradation-promoting effect of specific amino acids (glutamine and asparagine) on linuron degradation and SRS 16 growth. Overall, simulations are shown to be efficient in predicting the degradation potential of SRS 16 in the presence of specific supplements. The generated information contributes to the understanding of the biochemistry of linuron degradation and can be further utilized for the development of new cleanup solutions without any genetic manipulation.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Nunthaphan Vikromvarasiri ◽  
Tomokazu Shirai ◽  
Akihiko Kondo

Abstract Background Glycerol is a desirable alternative substrate for 2,3-butanediol (2,3-BD) production for sustainable development in biotechnological industries and non-food competitive feedstock. B. subtilis, a “generally recognized as safe” organism that is highly tolerant to fermentation products, is an ideal platform microorganism to engineer the pathways for the production of valuable bio-based chemicals, but it has never been engineered to improve 2,3-BD production from glycerol. In this study, we aimed to enhance 2,3-BD production from glycerol in B. subtilis through in silico analysis. Genome-scale metabolic model (GSM) simulations was used to design and develop the metabolic pathways of B. subtilis. Flux balance analysis (FBA) simulation was used to evaluate the effects of step-by-step gene knockouts to improve 2,3-BD production from glycerol in B. subtilis. Results B. subtilis was bioengineered to enhance 2,3-BD production from glycerol using FBA in a published GSM model of B. subtilis, iYO844. Four genes, ackA, pta, lctE, and mmgA, were knocked out step by step, and the effects thereof on 2,3-BD production were evaluated. While knockout of ackA and pta had no effect on 2,3-BD production, lctE knockout led to a substantial increase in 2,3-BD production. Moreover, 2,3-BD production was improved by mmgA knockout, which had never been investigated. In addition, comparisons between in silico simulations and fermentation profiles of all B. subtilis strains are presented in this study. Conclusions The strategy developed in this study, using in silico FBA combined with experimental validation, can be used to optimize metabolic pathways for enhanced 2,3-BD production from glycerol. It is expected to provide a novel platform for the bioengineering of strains to enhance the bioconversion of glycerol into other highly valuable chemical products.


2017 ◽  
Vol 6 (2) ◽  
pp. 149-160 ◽  
Author(s):  
P. Chellapandi ◽  
M. Bharathi ◽  
R. Prathiviraj ◽  
R. Sasikala ◽  
M. Vikraman

Author(s):  
Irnawati Irnawati ◽  
Florentinus Dika Octa Riswanto ◽  
Sugeng Riyanto ◽  
Sudibyo Martono ◽  
Abdul Rohman

Several oils have been reported as nutritional source and providing potential benefits for human life. Oil adulteration becomes major issue due to economical attempt to reduce the price of high cost oils. The employment of FTIR spectroscopy combined with Principal Component Analysis (PCA) technique can be applied in oils authentication study. Two of R software packages namely factoextra and FactoMineR were exploited to perform PCA for analysis sixteen various oils from market in Yogyakarta, Indonesia. The results showed that PCA model have been successfully generated using these two statistical packages. Individual plot, variable plot, and biplot were presented to visualize the PCA model. It was also proved that extra virgin olive oil (EVOO) has similar chemical characteristics to palm oil (PO) as reported in the previous study.


2021 ◽  
Vol 412 ◽  
pp. 115390
Author(s):  
Kristopher D. Rawls ◽  
Bonnie V. Dougherty ◽  
Kalyan C. Vinnakota ◽  
Venkat R. Pannala ◽  
Anders Wallqvist ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jingru Zhou ◽  
Yingping Zhuang ◽  
Jianye Xia

Abstract Background Genome-scale metabolic model (GSMM) is a powerful tool for the study of cellular metabolic characteristics. With the development of multi-omics measurement techniques in recent years, new methods that integrating multi-omics data into the GSMM show promising effects on the predicted results. It does not only improve the accuracy of phenotype prediction but also enhances the reliability of the model for simulating complex biochemical phenomena, which can promote theoretical breakthroughs for specific gene target identification or better understanding the cell metabolism on the system level. Results Based on the basic GSMM model iHL1210 of Aspergillus niger, we integrated large-scale enzyme kinetics and proteomics data to establish a GSMM based on enzyme constraints, termed a GEM with Enzymatic Constraints using Kinetic and Omics data (GECKO). The results show that enzyme constraints effectively improve the model’s phenotype prediction ability, and extended the model’s potential to guide target gene identification through predicting metabolic phenotype changes of A. niger by simulating gene knockout. In addition, enzyme constraints significantly reduced the solution space of the model, i.e., flux variability over 40.10% metabolic reactions were significantly reduced. The new model showed also versatility in other aspects, like estimating large-scale $$k_{{cat}}$$ k cat values, predicting the differential expression of enzymes under different growth conditions. Conclusions This study shows that incorporating enzymes’ abundance information into GSMM is very effective for improving model performance with A. niger. Enzyme-constrained model can be used as a powerful tool for predicting the metabolic phenotype of A. niger by incorporating proteome data. In the foreseeable future, with the fast development of measurement techniques, and more precise and rich proteomics quantitative data being obtained for A. niger, the enzyme-constrained GSMM model will show greater application space on the system level.


2012 ◽  
Vol 78 (24) ◽  
pp. 8735-8742 ◽  
Author(s):  
Yilin Fang ◽  
Michael J. Wilkins ◽  
Steven B. Yabusaki ◽  
Mary S. Lipton ◽  
Philip E. Long

ABSTRACTAccurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within anin silicomodel using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model ofGeobacter metallireducens—specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-basedin silicomodelof G. metallireducensrelates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637G. metallireducensproteins detected during the 2008 experiment were associated with specific metabolic reactions in thein silicomodel. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through thein silicomodel reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in thein silicomodel that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.


Metabolites ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 456
Author(s):  
Pejman Salahshouri ◽  
Modjtaba Emadi-Baygi ◽  
Mahdi Jalili ◽  
Faiz M. Khan ◽  
Olaf Wolkenhauer ◽  
...  

The human gut microbiota plays a dual key role in maintaining human health or inducing disorders, for example, obesity, type 2 diabetes, and cancers such as colorectal cancer (CRC). High-throughput data analysis, such as metagenomics and metabolomics, have shown the diverse effects of alterations in dynamic bacterial populations on the initiation and progression of colorectal cancer. However, it is well established that microbiome and human cells constantly influence each other, so it is not appropriate to study them independently. Genome-scale metabolic modeling is a well-established mathematical framework that describes the dynamic behavior of these two axes at the system level. In this study, we created community microbiome models of three conditions during colorectal cancer progression, including carcinoma, adenoma and health status, and showed how changes in the microbial population influence intestinal secretions. Conclusively, our findings showed that alterations in the gut microbiome might provoke mutations and transform adenomas into carcinomas. These alterations include the secretion of mutagenic metabolites such as H2S, NO compounds, spermidine and TMA, as well as the reduction of butyrate. Furthermore, we found that the colorectal cancer microbiome can promote inflammation, cancer progression (e.g., angiogenesis) and cancer prevention (e.g., apoptosis) by increasing and decreasing certain metabolites such as histamine, glutamine and pyruvate. Thus, modulating the gut microbiome could be a promising strategy for the prevention and treatment of CRC.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 168
Author(s):  
John I. Hendry ◽  
Hoang V. Dinh ◽  
Debolina Sarkar ◽  
Lin Wang ◽  
Anindita Bandyopadhyay ◽  
...  

Nitrogen fixing-cyanobacteria can significantly improve the economic feasibility of cyanobacterial production processes by eliminating the requirement for reduced nitrogen. Anabaena sp. ATCC 33047 is a marine, heterocyst forming, nitrogen fixing cyanobacteria with a very short doubling time of 3.8 h. We developed a comprehensive genome-scale metabolic (GSM) model, iAnC892, for this organism using annotations and content obtained from multiple databases. iAnC892 describes both the vegetative and heterocyst cell types found in the filaments of Anabaena sp. ATCC 33047. iAnC892 includes 953 unique reactions and accounts for the annotation of 892 genes. Comparison of iAnC892 reaction content with the GSM of Anabaena sp. PCC 7120 revealed that there are 109 reactions including uptake hydrogenase, pyruvate decarboxylase, and pyruvate-formate lyase unique to iAnC892. iAnC892 enabled the analysis of energy production pathways in the heterocyst by allowing the cell specific deactivation of light dependent electron transport chain and glucose-6-phosphate metabolizing pathways. The analysis revealed the importance of light dependent electron transport in generating ATP and NADPH at the required ratio for optimal N2 fixation. When used alongside the strain design algorithm, OptForce, iAnC892 recapitulated several of the experimentally successful genetic intervention strategies that over produced valerolactam and caprolactam precursors.


Sign in / Sign up

Export Citation Format

Share Document