scholarly journals Recent Advancements and Applications of Human Immune System Mice in Preclinical Immuno-Oncology

2019 ◽  
Vol 48 (2) ◽  
pp. 302-316 ◽  
Author(s):  
Michelle Curran ◽  
Maelle Mairesse ◽  
Alba Matas-Céspedes ◽  
Bethany Bareham ◽  
Giovanni Pellegrini ◽  
...  

Significant advances in immunotherapies have resulted in the increasing need of predictive preclinical models to improve immunotherapeutic drug development, treatment combination, and to prevent or minimize toxicity in clinical trials. Immunodeficient mice reconstituted with human immune system (HIS), termed humanized mice or HIS mice, permit detailed analysis of human immune biology, development, and function. Although this model constitutes a great translational model, some aspects need to be improved as the incomplete engraftment of immune cells, graft versus host disease and the lack of human cytokines and growth factors. In this review, we discuss current HIS platforms, their pathology, and recent advances in their development to improve the quality of human immune cell reconstitution. We also highlight new technologies that can be used to better understand these models and how improved characterization is needed for their application in immuno-oncology safety, efficacy, and new modalities therapy development.

Author(s):  
Tadepally Lakshmikanth ◽  
Sayyed Auwn Muhammad ◽  
Axel Olin ◽  
Yang Chen ◽  
Jaromir Mikes ◽  
...  

SUMMARYThe human immune system varies extensively between individuals, but variation within individuals over time has not been well characterized. Systems-level analyses allow for simultaneous quantification of many interacting immune system components, and the inference of global regulatory principles. Here we present a longitudinal, systems-level analysis in 99 healthy adults, 50 to 65 years of age and sampled every 3rd month during one year. We describe the structure of inter-individual variation and characterize extreme phenotypes along a principal curve. From coordinated measurement fluctuations, we infer relationships between 115 immune cell populations and 750 plasma proteins constituting the blood immune system. While most individuals have stable immune systems, the degree of longitudinal variability is an individual feature. The most variable individuals, in the absence of overt infections, exhibited markers of poor metabolic health suggestive of a functional link between metabolic and immunologic homeostatic regulation.HIGHLIGHTSLongitudinal variation in immune cell composition during one yearInter-individual variation can be described along a principal curveImmune cell and protein relationships are inferredVariability over time is an individual feature correlating with markers of poor metabolic health


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 98
Author(s):  
David M. Wozniak ◽  
Kerry J. Lavender ◽  
Joseph Prescott ◽  
Jessica R. Spengler

Human immune system (HIS) mice are a subset of humanized mice that are generated by xenoengraftment of human immune cells or tissues and/or their progenitors into immunodeficient mice. Viral hemorrhagic fevers (VHFs) cause severe disease in humans, typically with high case fatality rates. HIS mouse studies have been performed to investigate the pathogenesis and immune responses to VHFs that must be handled in high-containment laboratory facilities. Here, we summarize studies on filoviruses, nairoviruses, phenuiviruses, and hantaviruses, and discuss the knowledge gained from using various HIS mouse models. Furthermore, we discuss the complexities of designing and interpreting studies utilizing HIS mice while highlighting additional questions about VHFs that can still be addressed using HIS mouse models.


2021 ◽  
Vol 12 ◽  
Author(s):  
Isabelle Serr ◽  
Maria Kral ◽  
Martin G. Scherm ◽  
Carolin Daniel

Immunodeficient mice engrafted with a functional human immune system [Human immune system (HIS) mice] have paved the way to major advances for personalized medicine and translation of immune-based therapies. One prerequisite for advancing personalized medicine is modeling the immune system of individuals or disease groups in a preclinical setting. HIS mice engrafted with peripheral blood mononuclear cells have provided fundamental insights in underlying mechanisms guiding immune activation vs. regulation in several diseases including cancer. However, the development of Graft-vs.-host disease restrains relevant long-term studies in HIS mice. Alternatively, engraftment with hematopoietic stem cells (HSCs) enables mimicking different disease stages, however, low frequencies of HSCs in peripheral blood of adults impede engraftment efficacy. One possibility to overcome those limitations is the use of patient-derived induced pluripotent stem cells (iPSCs) reprogrammed into HSCs, a challenging process which has recently seen major advances. Personalized HIS mice bridge research in mice and human diseases thereby facilitating the translation of immunomodulatory therapies. Regulatory T cells (Tregs) are important mediators of immune suppression and thereby contribute to tumor immune evasion, which has made them a central target for cancer immunotherapies. Importantly, studying Tregs in the human immune system in vivo in HIS mice will help to determine requirements for efficient Treg-targeting. In this review article, we discuss advances on personalized HIS models using reprogrammed iPSCs and review the use of HIS mice to study requirements for efficient targeting of human Tregs for personalized cancer immunotherapies.


2021 ◽  
Author(s):  
Congmin Xu ◽  
Junkai Yang ◽  
Astrid Kosters ◽  
Benjamin R Babcock ◽  
Peng Qiu ◽  
...  

Single-cell transcriptomics enables the definition of diverse human immune cell types across multiple tissue and disease contexts. Still, deeper biological understanding requires comprehensive integration of multiple single-cell omics (transcriptomic, proteomic, and cell receptor repertoire). To improve the identification of diverse cell types and the accuracy of cell-type classification in our multi-omics single-cell datasets, we developed SuPERR-seq, a novel analysis workflow to increase the resolution and accuracy of clustering and allow for the discovery and characterization of previously hidden cell subsets. We show that by incorporating information from cell-surface proteins and immunoglobulin transcript counts, we accurately remove cell doublets and prevent widespread cell-type misclassification. This approach uniquely improves the identification of heterogeneous cell types in the human immune system, including a novel subset of antibody-secreting cells in the bone marrow.


Blood ◽  
2006 ◽  
Vol 108 (2) ◽  
pp. 487-492 ◽  
Author(s):  
Ping Lan ◽  
Noriko Tonomura ◽  
Akira Shimizu ◽  
Shumei Wang ◽  
Yong-Guang Yang

Studies of the human immune system have been limited by the lack of an appropriate in vivo model. For this reason, efforts have been made to develop murine models with a functional human immune system. We report here that cotransplantation of human fetal thymus/liver tissues and CD34+ hematopoietic stem/progenitor cells led to the development of sustained human hematopoiesis and a functional human immune system in immunodeficient NOD/SCID mice. The humanized mice showed systemic repopulation with a comprehensive array of human lymphohematopoietic cells, including T cells, B cells, and dendritic cells, and the formation of secondary lymphoid organs. Furthermore, these mice produce high levels of human IgM and IgG antibodies and mediate strong immune responses in vivo as demonstrated by skin xenograft rejection. Thus, the humanized NOD/SCID mice described in this paper provide a powerful model system to study human immune function.


2021 ◽  
Author(s):  
Yang Hu ◽  
Yudai Xu ◽  
Lipeng Mao ◽  
Wen Lei ◽  
Jan Jian Xiang ◽  
...  

Abstract Background: Human immune system functions over an entire lifetime, yet how and why the immune system becomes less effective with age are not well understood. Therefore, the aim of this study is to exploit a large-scale population-based strategy to systematically identify genes and pathways differentially expressed as a function of chronological age. Despite the importance of age and race in shaping immune cell numbers and functions, it is unclear whether Asian and Caucasian immune systems go through similar gene expression changes throughout their lifespan, and to what extent these aging-associated variations are shared among ethnicities. Results: Here, we characterize peripheral blood mononuclear cells transcriptome from 19 healthy adults of RNA-seq data and 153 healthy subjects of micoarray data with 21~90 years of age using the weighted gene correlation network analyses (WGCNA). These data reveal a set of insightful gene expression modules and representative gene biomarkers for human immune system aging from Asian and Caucasian ancestry, respectively. Among them, the aging-specific modules may show an age-related gene expression variation spike around early-seventies. In addition, we find the top hub genes including NUDT7, CLPB, OXNAD1 and MLLT3 are shared between Asian and Caucasian aging related modules and further validated in human PBMCs from different age groups. Conclusion: Overall, our findings reveal how age and race differentially affect the immune systems between Asian and Caucasian, as well as discovered a common genetic variant that greatly impacts normal PBMC aging between Asian and Caucasian.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mary Prahl ◽  
Pamela Odorizzi ◽  
David Gingrich ◽  
Mary Muhindo ◽  
Tara McIntyre ◽  
...  

AbstractThe use of pesticides to reduce mosquito vector populations is a cornerstone of global malaria control efforts, but the biological impact of most pesticides on human populations, including pregnant women and infants, is not known. Some pesticides, including carbamates, have been shown to perturb the human immune system. We measure the systemic absorption and immunologic effects of bendiocarb, a commonly used carbamate pesticide, following household spraying in a cohort of pregnant Ugandan women and their infants. We find that bendiocarb is present at high levels in maternal, umbilical cord, and infant plasma of individuals exposed during pregnancy, indicating that it is systemically absorbed and trans-placentally transferred to the fetus. Moreover, bendiocarb exposure is associated with numerous changes in fetal immune cell homeostasis and function, including a dose-dependent decrease in regulatory CD4 T cells, increased cytokine production, and inhibition of antigen-driven proliferation. Additionally, prenatal bendiocarb exposure is associated with higher post-vaccination measles titers at one year of age, suggesting that its impact on functional immunity may persist for many months after birth. These data indicate that in utero bendiocarb exposure has multiple previously unrecognized biological effects on the fetal immune system.


2015 ◽  
Vol 37 (4) ◽  
pp. 1355-1368 ◽  
Author(s):  
Zhen Gong ◽  
Hanzi Xu ◽  
Yiping Su ◽  
Wangfei Wu ◽  
Lin Hao ◽  
...  

Background/Aims: The aim of this study was to develop a novel model by transplanting human bladder cancer xenografts into humanized immunodeficient mice (SCID). Methods: The animals first underwent sublethal irradiation and then were subjected to simultaneous transplantation of human lymphocytes (5 × 107 cells/mouse i.p.) and human bladder cancer cells (3 × 106 cells/mouse s.c.). Results: The xenografts developed in all 12 mice that had received bladder cancer BIU-87 cells, and the tumor specimens were evaluated histologically. All 6 model mice expressed human CD3 mRNA and/or protein in the peripheral blood, spleens and xenografts. The mean proportion of human CD3+ cells was 19% with a level of human IgG 532.4µ/ml in the peripheral blood at Week 6 after transplant inoculation. The re-constructed human immune system in these mice was confirmed to be functional by individual in vitro testing of their proliferative, secretory and cytotoxic responses. Conclusion: The successful engraftment of the human bladder cancer xenografts and the establishment of the human immune system in our in vivo model described here may provide a useful tool for the development of novel therapeutic strategies targeting at bladder cancer.


2017 ◽  
Vol 56 (208) ◽  
pp. 482-6 ◽  
Author(s):  
Badri Man Shrestha

The immune system recognises a transplanted kidney as foreign body and mounts immune response through cellular and humoral mechanisms leading to acute or chronic rejection, which ultimately results in graft loss. Over the last five decades, there have been significant advances in the understanding of the immune responses to transplanted organs in both experimental and clinical transplant settings. Modulation of the immune response by using immunosuppressive agents has led to successful outcomes after kidney transplantation. The paper provides an overview of the general organisation and function of human immune system, immune response to kidney transplantation, and the current practice of immunosuppressive therapy in kidney transplantation in the United Kingdom.


Sign in / Sign up

Export Citation Format

Share Document