scholarly journals Flexible recruitments of fundamental muscle synergies in the trunk and lower limbs for highly variable movements and postures

2021 ◽  
Author(s):  
Hiroki Saito ◽  
Hikaru Yokoyama ◽  
Atsushi Sasaki ◽  
Tatsuya Kato ◽  
Kimitaka Nakazawa

The extent to which muscle synergies represent the neural control of human behavior remains unknown. Here, we tested whether certain sets of muscle synergies that are fundamentally necessary across behaviors exist. We measured the electromyographic activities of 26 muscles including bilateral trunk and lower limb muscles during 24 locomotion, dynamic and static stability tasks, and extracted the muscle synergies using non-negative matrix factorization. Our results showed that 13 muscle synergies that may have unique functional roles accounted for almost all 24 tasks by combinations of single and/or merging of synergies. Therefore, our results may support the notion of the low dimensionality in motor outputs, in which the central nervous system flexibly recruits fundamental muscle synergies to execute diverse human behaviors. Further studies using manipulations of the central nervous system and/or neural recording are required the neural representation with such fundamental components of muscle synergies.

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6186
Author(s):  
Hiroki Saito ◽  
Hikaru Yokoyama ◽  
Atsushi Sasaki ◽  
Tatsuya Kato ◽  
Kimitaka Nakazawa

The extent to which muscle synergies represent the neural control of human behavior remains unknown. Here, we tested whether certain sets of muscle synergies that are fundamentally necessary across behaviors exist. We measured the electromyographic activities of 26 muscles, including bilateral trunk and lower limb muscles, during 24 locomotion, dynamic and static stability tasks, and we extracted the muscle synergies using non-negative matrix factorization. Our results show that 13 muscle synergies that may have unique functional roles accounted for almost all 24 tasks by combinations of single and/or merging of synergies. Therefore, our results may support the notion of the low dimensionality in motor outputs, in which the central nervous system flexibly recruits fundamental muscle synergies to execute diverse human behaviors. Further studies are required to validate the neural representation of the fundamental components of muscle synergies.


1951 ◽  
Vol 28 (4) ◽  
pp. 463-472
Author(s):  
D. B. CARLISLE

1. It is argued that the neural gland (+ciliated pit) of ascidians is homologous with the entire pituitary of vertebrates, adenohypophysis as well as neurohypophysis. 2. Ciona and Phallusia are shown to respond to an injection of chorionic gonadotrophin by the release of gametes. 3. They respond in the same way to feeding with eggs and sperm of their own species but not to those of other species. 4. This response is prevented in both cases by section of the nerves from the ganglion to the region of the gonads. 5. Destruction of the heart and removal of the blood does not prevent the response to feeding with gametes, nor to injection of gonadotrophin into the neural region; this operation does prevent the reaction if the site of injection is elsewhere. 6. Destruction of the neural gland, leaving the ganglion intact, prevents the response to feeding with gametes, but does not prevent its following an injection of chorionic gonadotrophin. 7. The hypothesis is advanced that the neural gland (+ciliated pit) is the sense organ involved in this response to feeding, and that it produces gonadotrophin and passes it to the ganglion by a non-vascular route; the ganglion then stimulates by nervous pathways the gonads to release gametes. 8. It is suggested that gonadotrophin is here fulfilling a sensory role in passing information from sense organ to the central nervous system. It may be contrasted with adrenalin which passes instructions from the central nervous system to effectors. 9. Phallusia is shown to respond with gamete release to an injection of an extract of the neural complex of Ciona.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yang Tian ◽  
Chen Fu ◽  
Yifan Wu ◽  
Yao Lu ◽  
Xuemei Liu ◽  
...  

Exosomes are a type of extracellular vesicles secreted by almost all kinds of mammalian cells that shuttle “cargo” from one cell to another, indicative of its role in cell-to-cell transportation. Interestingly, exosomes are known to undergo alterations or serve as a pathway in multiple diseases, including neurodegenerative diseases. In the central nervous system (CNS), exosomes originating from neurons or glia cells contribute to or inhibit the progression of CNS-related diseases in special ways. In lieu of this, the current study investigated the effect of CNS cell-derived exosomes on different neurodegenerative diseases.


2018 ◽  
Author(s):  
Cristiano Alessando ◽  
Benjamin A. Rellinger ◽  
Filipe O. Barroso ◽  
Matthew C. Tresch

AbstractIn order to produce movements, muscles must act through joints. The translation from muscle force to limb movement is mediated by internal joint structures that permit movement in some directions but constrain it in others. Although muscle forces acting against constrained directions will not affect limb movements, such forces can cause excess stresses and strains in joint structures, leading to pain or injury. In this study, we hypothesized that the central nervous system (CNS) chooses muscle activations to avoid excess joint stresses and strains. We evaluated this hypothesis by examining adaptation strategies after selective paralysis of a muscle acting at the rat knee. We show that the CNS compromises between restoration of task performance and regulation of joint stresses and strains. These results have significant implications to our understanding of the neural control of movements, suggesting that common theories emphasizing task performance are insufficient to explain muscle activations during behaviors.


1981 ◽  
Vol 92 (1) ◽  
pp. 165-172
Author(s):  
ALBERT D. CARLSON

1. Continuous electrical stimulation of the ventral nerve cord or the lantern of the decapitated male Photuris versicolor firefly over a wide range of stimulus frequencies can produce a flash that is multi-peaked, like the courtship flash of this species. The central nervous system does not shape these stimulated compound flashes because they can be induced in deganglionated posterior lantern segments. 2. The stimulated compound flashes show a fixed oscillatory character with peak frequencies independent of stimulation frequency. They can be generated by individual lantern areas. Compared with the peaks of courtship flashes the peaks of stimulated flashes show higher frequency, significantly lower temperature coefficients (Q)10, and incomplete extinction. 3. P. lucicrescens males produce a courtship flash that has a single peak and their lanterns respond to continuous stimulation with an unstructured glow.


PEDIATRICS ◽  
1972 ◽  
Vol 50 (2) ◽  
pp. 181-183
Author(s):  
John H. Menkes

Despite many recent advances in our understanding of progressive degenerative diseases of the nervous system which have permitted us in some instances to define the underlying enzymatic defect and to detect the disease in utero, treatment for affected children has been nonexistent in almost all instances. The paper by Danks et al.1 in this issue of Pediatrics is, therefore, of considerable importance. It not only demonstrates the underlying cause for one of these disorders, Kinky Hair disease, but also suggests a relatively simple course of treatment. Ten years ago a group of Residents from the Departments of Neurology, Pediatric Neurology, Neuropathology, and Dermatology described in this journal2 what appeared to be a new degenerative disease of the central nervous system.


2018 ◽  
Vol 125 (5) ◽  
pp. 1404-1410 ◽  
Author(s):  
A. Del Vecchio ◽  
A. Úbeda ◽  
M. Sartori ◽  
J. M. Azorín ◽  
F. Felici ◽  
...  

Force is generated by muscle units according to the neural activation sent by motor neurons. The motor unit is therefore the interface between the neural coding of movement and the musculotendinous system. Here we propose a method to accurately measure the latency between an estimate of the neural drive to muscle and force. Furthermore, we systematically investigate this latency, which we refer to as the neuromechanical delay (NMD), as a function of the rate of force generation. In two experimental sessions, eight men performed isometric finger abduction and ankle dorsiflexion sinusoidal contractions at three frequencies and peak-to-peak amplitudes {0.5, 1, and 1.5 Hz; 1, 5, and 10 of maximal force [%maximal voluntary contraction (MVC)]}, with a mean force of 10% MVC. The discharge timings of motor units of the first dorsal interosseous (FDI) and tibialis anterior (TA) muscle were identified by high-density surface EMG decomposition. The neural drive was estimated as the cumulative discharge timings of the identified motor units. The neural drive predicted 80 ± 0.4% of the force fluctuations and consistently anticipated force by 194.6 ± 55 ms (average across conditions and muscles). The NMD decreased nonlinearly with the rate of force generation ( R2 = 0.82 ± 0.07; exponential fitting) with a broad range of values (from 70 to 385 ms) and was 66 ± 0.01 ms shorter for the FDI than TA ( P < 0.001). In conclusion, we provided a method to estimate the delay between the neural control and force generation, and we showed that this delay is muscle-dependent and is modulated within a wide range by the central nervous system. NEW & NOTEWORTHY The motor unit is a neuromechanical interface that converts neural signals into mechanical force with a delay determined by neural and peripheral properties. Classically, this delay has been assessed from the muscle resting level or during electrically elicited contractions. In the present study, we introduce the neuromechanical delay as the latency between the neural drive to muscle and force during variable-force contractions, and we show that it is broadly modulated by the central nervous system.


1983 ◽  
Vol 31 (1A_suppl) ◽  
pp. 181-185 ◽  
Author(s):  
Y. Takeuchi ◽  
H. Kimura ◽  
T. Matsuura ◽  
T. Yonezawa ◽  
Y. Sano

Distribution of serotonin (5-HT) neurons in the central nervous system (CNS) of various vertebrates was investigated with a highly sensitive immunohistochemical technique. Antibodies were raised in rabbits against an antigen prepared by coupling 5-HT to bovine thyroglobulin. 5-HT neurons were found to be distributed more widely and densely than has been heretofore described. Serotonergic neuronal somata are organized according to certain basic patterns, but there are interspecific differences with regard to the distribution of 5-HT fibers. The processes of 5-HT neurons form a dense plexus by ramification and anastomosis in almost all areas of the CNS, including the ventricular surfaces. In the light of our observations, Golgi's reticular theory may have to be revised.


1995 ◽  
Vol 268 (1) ◽  
pp. G1-G10 ◽  
Author(s):  
R. C. Rogers ◽  
D. M. McTigue ◽  
G. E. Hermann

Vagovagal reflex control circuits in the dorsal vagal complex of the brain stem provide overall coordination of gastric, small intestinal, and pancreatic digestive functions. The neural components forming these reflex circuits are under substantial descending neural control. By adjusting the excitability of the differing components of the reflex, significant alterations in digestion control can be produced by the central nervous system. Additionally, the dorsal vagal complex is situated within a circumventricular region without a "blood-brain barrier." As a result, vagovagal reflex circuitry is also exposed to humoral influences, which can profoundly alter digestive functions by acting directly on brain stem neurons.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4601 ◽  
Author(s):  
Katsuya Satoh ◽  
Takayuki Fuse ◽  
Toshiaki Nonaka ◽  
Trong Dong ◽  
Masaki Takao ◽  
...  

Human prion diseases are neurodegenerative disorders caused by prion protein. Although infectivity was historically detected only in the central nervous system and lymphoreticular tissues of patients with sporadic Creutzfeldt-Jakob disease, recent reports suggest that the seeding activity of Creutzfeldt-Jakob disease prions accumulates in various non-neuronal organs including the liver, kidney, and skin. Therefore, we reanalyzed autopsy samples collected from patients with sporadic and genetic human prion diseases and found that seeding activity exists in almost all digestive organs. Unexpectedly, activity in the esophagus reached a level of prion seeding activity close to that in the central nervous system in some CJD patients, indicating that the safety of endoscopic examinations should be reconsidered.


Sign in / Sign up

Export Citation Format

Share Document