scholarly journals Robust and Functional Immunity up to 9 months after SARS-CoV-2 infection: a Southeast Asian longitudinal cohort

2021 ◽  
Author(s):  
Hoa My Thi Vo ◽  
Alvino Maestri ◽  
Sokchea Lay ◽  
Sotheary Sann ◽  
Nisa Ya ◽  
...  

Assessing the duration of humoral and cellular immunity remains key to overcome the current SARS-CoV-2 pandemic, especially in understudied populations in least developed countries. Sixty-four Cambodian individuals with laboratory-confirmed infection with asymptomatic or mild/moderate clinical presentation were evaluated for humoral immune response to the viral spike protein and antibody effector functions during acute phase of infection and at 6-9 months follow-up. Antigen-specific B cells, CD4+ and CD8+ T cells were characterized, and T cells were interrogated for functionality at late convalescence. Anti-spike (S) antibody titers decreased over time, but effector functions mediated by S-specific antibodies remained stable. S- and nucleocapsid (N)-specific B cells could be detected in late convalescence in the activated memory B cell compartment and are mostly IgG+. CD4+ and CD8+ T cell immunity was maintained to S and membrane (M) protein. Asymptomatic infection resulted in decreased ADCC and frequency of SARS-CoV-2-specific CD4+ T cells at late convalescence. Whereas anti-S antibodies correlated with S-specific B cells, there was no correlation between T cell response and humoral immunity. Hence, all aspects of a protective immune response are maintained up to nine months after SARS-CoV-2 infection in the absence of re-infection.

Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 233
Author(s):  
Emma Rey-Jurado ◽  
Karen Bohmwald ◽  
Hernán G. Correa ◽  
Alexis M. Kalergis

T cells play an essential role in the immune response against the human respiratory syncytial virus (hRSV). It has been described that both CD4+ and CD8+ T cells can contribute to the clearance of the virus during an infection. However, for some individuals, such an immune response can lead to an exacerbated and detrimental inflammatory response with high recruitment of neutrophils to the lungs. The receptor of most T cells is a heterodimer consisting of α and β chains (αβTCR) that upon antigen engagement induces the activation of these cells. The αβTCR molecule displays a broad sequence diversity that defines the T cell repertoire of an individual. In our laboratory, a recombinant Bacille Calmette–Guérin (BCG) vaccine expressing the nucleoprotein (N) of hRSV (rBCG-N-hRSV) was developed. Such a vaccine induces T cells with a Th1 polarized phenotype that promote the clearance of hRSV infection without causing inflammatory lung damage. Importantly, as part of this work, the T cell receptor (TCR) repertoire of T cells expanded after hRSV infection in naïve and rBCG-N-hRSV-immunized mice was characterized. A more diverse TCR repertoire was observed in the lungs from rBCG-N-hRSV-immunized as compared to unimmunized hRSV-infected mice, suggesting that vaccination with the recombinant rBCG-N-hRSV vaccine triggers the expansion of T cell populations that recognize more viral epitopes. Furthermore, differential expansion of certain TCRVβ chains was found for hRSV infection (TCRVβ+8.3 and TCRVβ+5.1,5.2) as compared to rBCG-N-hRSV vaccination (TCRVβ+11 and TCRVβ+12). Our findings contribute to better understanding the T cell response during hRSV infection, as well as the functioning of a vaccine that induces a protective T cell immunity against this virus.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sergej Tomić ◽  
Jelena Đokić ◽  
Dejan Stevanović ◽  
Nataša Ilić ◽  
Alisa Gruden-Movsesijan ◽  
...  

Widespread coronavirus disease (COVID)-19 is causing pneumonia, respiratory and multiorgan failure in susceptible individuals. Dysregulated immune response marks severe COVID-19, but the immunological mechanisms driving COVID-19 pathogenesis are still largely unknown, which is hampering the development of efficient treatments. Here we analyzed ~140 parameters of cellular and humoral immune response in peripheral blood of 41 COVID-19 patients and 16 age/gender-matched healthy donors by flow-cytometry, quantitative PCR, western blot and ELISA, followed by integrated correlation analyses with ~30 common clinical and laboratory parameters. We found that lymphocytopenia in severe COVID-19 patients (n=20) strongly affects T, NK and NKT cells, but not B cells and antibody production. Unlike increased activation of ICOS-1+ CD4+ T cells in mild COVID-19 patients (n=21), T cells in severe patients showed impaired activation, low IFN-γ production and high functional exhaustion, which correlated with significantly down-regulated HLA-DR expression in monocytes, dendritic cells and B cells. The latter phenomenon was followed by lower interferon responsive factor (IRF)-8 and autophagy-related genes expressions, and the expansion of myeloid derived suppressor cells (MDSC). Intriguingly, PD-L1-, ILT-3-, and IDO-1-expressing monocytic MDSC were the dominant producers of IL-6 and IL-10, which correlated with the increased inflammation and accumulation of regulatory B and T cell subsets in severe COVID-19 patients. Overall, down-regulated IRF-8 and autophagy-related genes expression, and the expansion of MDSC subsets could play critical roles in dysregulating T cell response in COVID-19, which could have large implications in diagnostics and design of novel therapeutics for this disease.


2021 ◽  
Author(s):  
Damon H. May ◽  
Benjamin E. R. Rubin ◽  
Sudeb C. Dalai ◽  
Krishna Patel ◽  
Shahin Shafiani ◽  
...  

The Omicron SARS-CoV-2 variant contains 34 mutations in the spike gene likely impacting protective efficacy from vaccines. We evaluated the potential impact of these mutations on the cellular immune response. Combining epitope mapping to SARS-CoV-2 vaccines that we have determined from past experiments along with T cell receptor (TCR) repertoire sequencing from thousands of vaccinated or naturally infected individuals, we estimate the abrogation of the cellular immune response in Omicron. Although 20% of CD4+ T cell epitopes are potentially affected, the loss of immunity mediated by CD4+ T cells is estimated to be slightly above 30% as some of the affected epitopes are relatively more immunogenic. For CD8+ T cells, we estimate a loss of approximately 20%. These reductions in T cell immunity are substantially larger than observed in other widely distributed variants. Combined with the expected substantial loss of neutralization from antibodies, the overall protection provided by SARS-CoV-2 vaccines could be impacted adversely. From analysis of prior variants, the efficacy of vaccines against symptomatic infection has been largely maintained and is strongly correlated with the T cell response but not as strongly with the neutralizing antibody response. We expect the remaining 70% to 80% of on-target T cells induced by SARS-CoV-2 vaccination to reduce morbidity and mortality from infection with Omicron.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Facundo Fiocca Vernengo ◽  
Cristian G. Beccaria ◽  
Cintia L. Araujo Furlan ◽  
Jimena Tosello Boari ◽  
Laura Almada ◽  
...  

ABSTRACT Treatment with anti-CD20, used in many diseases in which B cells play a pathogenic role, has been associated with susceptibility to intracellular infections. Here, we studied the effect of anti-CD20 injection on CD8+ T cell immunity using an experimental model of Trypanosoma cruzi infection, in which CD8+ T cells play a pivotal role. C57BL/6 mice were treated with anti-CD20 for B cell depletion prior to T. cruzi infection. Infected anti-CD20-treated mice exhibited a CD8+ T cell response with a conserved expansion phase followed by an early contraction, resulting in a strong reduction in total and parasite-specific CD8+ T cell numbers at 20 days postinfection. Anti-CD20 injection increased the frequency of apoptotic CD8+ T cells, decreased the number of effector and memory CD8+ T cells, and reduced the frequency of proliferating and cytokine-producing CD8+ T cells. Accordingly, infected anti-CD20-treated mice presented lower cytotoxicity of T. cruzi peptide-pulsed target cells in vivo. All of these alterations in CD8+ T cell immunity were associated with increased tissue parasitism. Anti-CD20 injection also dampened the CD8+ T cell response, when this had already been generated, indicating that B cells were involved in the maintenance rather than the induction of CD8+ T cell immunity. Anti-CD20 injection also resulted in a marked reduction in the frequency of interleukin-6 (IL-6)- and IL-17A-producing cells, and recombinant IL-17A (rIL-17A) injection partially restored the CD8+ T cell response in infected anti-CD20-treated mice. Thus, anti-CD20 reduced CD8+ T cell immunity, and IL-17A is a candidate for rescuing deficient responses either directly or indirectly. IMPORTANCE Monoclonal antibody targeting the CD20 antigen on B cells is used to treat the majority of non-Hodgkin lymphoma patients and some autoimmune disorders. This therapy generates adverse effects, notably opportunistic infections and activation of viruses from latency. Here, using the infection murine model with the intracellular parasite Trypanosoma cruzi, we report that anti-CD20 treatment affects not only B cell responses but also CD8+ T cell responses, representing the most important immune effectors involved in control of intracellular pathogens. Anti-CD20 treatment, directly or indirectly, affects cytotoxic T cell number and function, and this deficient response was rescued by the cytokine IL-17A. The identification of IL-17A as the cytokine capable of reversing the poor response of CD8+ T cells provides information about a potential therapeutic treatment aimed at enhancing defective immunity induced by B cell depletion.


2019 ◽  
Author(s):  
Facundo Fiocca Vernengo ◽  
Cristian G. Beccaria ◽  
Cintia L. Araujo Furlan ◽  
Jimena Tosello Boari ◽  
Laura Almada ◽  
...  

AbstractTreatment with anti-CD20, used in many diseases in which B cells play a pathogenic role, has been associated with susceptibility to intracellular infections. Here, we studied the effect of anti-CD20 injection on CD8+ T cell immunity using an experimental model of Trypanosoma cruzi infection, in which CD8+ T cells play a pivotal role. C57BL/6 mice were treated with anti-CD20 for B cell depletion prior to T. cruzi infection. Infected anti-CD20-treated mice exhibited a CD8+ T cell response with a conserved expansion phase followed by an early contraction, resulting in a strong reduction in total and parasite-specific CD8+ T cells at 20 days postinfection. Anti-CD20 injection decreased the number of effector and memory CD8+ T cells and reduced the frequency of proliferating and cytokine producing CD8+ T cells. Accordingly, infected anti-CD20-treated mice presented a lower cytotoxicity of T. cruzi peptide-pulsed target cells in vivo. All of these alterations in CD8+ T cell immunity were associated with increased tissue parasitism. Anti-CD20 injection also dampened an established CD8+ T cell response, indicating that B cells were involved in the maintenance rather than the induction of CD8+ T cell immunity. Anti-CD20 injection also resulted in a marked reduction in the frequency of IL-6- and IL-17A-producing cells, and only rIL-17A injection partially restored the CD8+ T cell response in infected anti-CD20-treated mice. Thus, anti-CD20 reduced CD8+ T cell immunity, and IL-17A is a candidate for rescuing deficient responses either directly or indirectly.ImportanceMonoclonal antibody targeting the CD20 antigen on B cells is used to treat the majority of Non-Hodgkin lymphoma patients and some autoimmune disorders. This therapy generates adverse effects, notably opportunistic infections and activation of viruses from latency. Here, using the infection murine model with the intracellular parasite Trypanosoma cruzi, we report that anti-CD20 treatment not only affects B cell response but also CD8+ T cells, the most important immune effectors involved in control of intracellular pathogens. Anti-CD20 treatment, directly or indirectly, affects cytotoxic T cell number and function and this deficient response was rescued by the cytokine IL-17A. The identification of IL-17A as the cytokine capable of reversing the poor response of CD8+ T cells provide information about a potential therapeutic treatment aimed at enhancing defective immunity induced by B cell depletion.


2002 ◽  
Vol 70 (2) ◽  
pp. 434-443 ◽  
Author(s):  
Lori Casciotti ◽  
Kenneth H. Ely ◽  
Martha E. Williams ◽  
Imtiaz A. Khan

ABSTRACT T-cell immunity is critical for survival of hosts infected with Toxoplasma gondii. Among the cells in the T-cell population, CD8+ T cells are considered the major effector cells against this parasite. It is believed that CD4+ T cells may be crucial for induction of the CD8+-T-cell response against T. gondii. In the present study, CD4−/− mice were used to evaluate the role of conventional CD4+ T cells in the immune response against T. gondii infection. CD4−/− mice infected with T. gondii exhibited lower gamma interferon (IFN-γ) messages in the majority of their tissues. As a result, mortality due to a hyperinflammatory response was prevented in these animals. Interestingly, T. gondii infection induced a normal antigen-specific CD8+-T-cell immune response in CD4−/− mice. No difference in generation of precursor cytotoxic T lymphocytes (pCTL) or in IFN-γ production by the CD8+-T-cell populations from the knockout and wild-type animals was observed. However, the mutant mice were not able to sustain CD8+-T-cell immunity. At 180 days after infection, the CD8+-T-cell response in the knockout mice was depressed, as determined by pCTL and IFN-γ assays. Loss of CD8+-T-cell immunity at this time was confirmed by adoptive transfer experiments. Purified CD8+ T cells from CD4−/− donors that had been immunized 180 days earlier failed to protect the recipient mice against a lethal infection. Our study demonstrated that although CD8+-T-cell immunity can be induced in the absence of conventional CD4+ T cells, it cannot be maintained without such cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amanda W. K. AuYeung ◽  
Robert C. Mould ◽  
Ashley A. Stegelmeier ◽  
Jacob P. van Vloten ◽  
Khalil Karimi ◽  
...  

AbstractVaccination can prevent viral infections via virus-specific T cells, among other mechanisms. A goal of oncolytic virotherapy is replication of oncolytic viruses (OVs) in tumors, so pre-existing T cell immunity against an OV-encoded transgene would seem counterproductive. We developed a treatment for melanomas by pre-vaccinating against an oncolytic vesicular stomatitis virus (VSV)-encoded tumor antigen. Surprisingly, when the VSV-vectored booster vaccine was administered at the peak of the primary effector T cell response, oncolysis was not abrogated. We sought to determine how oncolysis was retained during a robust T cell response against the VSV-encoded transgene product. A murine melanoma model was used to identify two mechanisms that enable this phenomenon. First, tumor-infiltrating T cells had reduced cytopathic potential due to immunosuppression. Second, virus-induced lymphopenia acutely removed virus-specific T cells from tumors. These mechanisms provide a window of opportunity for replication of oncolytic VSV and rationale for a paradigm change in oncolytic virotherapy, whereby immune responses could be intentionally induced against a VSV-encoded melanoma-associated antigen to improve safety without abrogating oncolysis.


2021 ◽  
Vol 9 (6) ◽  
pp. e002269
Author(s):  
Shota Aoyama ◽  
Ryosuke Nakagawa ◽  
Satoshi Nemoto ◽  
Patricio Perez-Villarroel ◽  
James J Mulé ◽  
...  

BackgroundThe temporal response to checkpoint blockade (CB) is incompletely understood. Here, we profiled the tumor infiltrating lymphocyte (TIL) landscape in response to combination checkpoint blockade at two distinct timepoints of solid tumor growth.MethodsC57BL/6 mice bearing subcutaneous MC38 tumors were treated with anti-PD-1 and/or anti-CTLA-4 antibodies. At 11 or 21 days, TIL phenotype and effector function were analyzed in excised tumor digests using high parameter flow cytometry. The contributions of major TIL populations toward overall response were then assessed using ex vivo cytotoxicity and in vivo tumor growth assays.ResultsThe distribution and effector function among 37 distinct TIL populations shifted dramatically between early and late MC38 growth. At 11 days, the immune response was dominated by Tumor necrosis factor alpha (TNFα)-producing NKT, representing over half of all TIL. These were accompanied by modest frequencies of natural killer (NK), CD4+, or CD8+ T cells, producing low levels of IFN-γ. At 21 days, NKT populations were reduced to a combined 20% of TIL, giving way to increased NK, CD4+, and CD8+ T cells, with increased IFN-γ production. Treatment with CB accelerated this switch. At day 11, CB reduced NKT to less than 20% of all TIL, downregulated TNFα across NKT and CD4+ T cell populations, increased CD4+ and CD8+ TIL frequencies, and significantly upregulated IFN-γ production. Degranulation was largely associated with NK and NKT TIL. Blockade of H-2kb and/or CD1d during ex vivo cytotoxicity assays revealed NKT has limited direct cytotoxicity against parent MC38. However, forced CD1d overexpression in MC38 cells significantly diminished tumor growth, suggesting NKT TIL exerts indirect control over MC38 growth.ConclusionsDespite an indirect benefit of early NKT activity, CB accelerates a switch from TNFα, NKT-driven immune response toward an IFN-γ driven CD4+/CD8+ T cell response in MC38 tumors. These results uncover a novel NKT/T cell switch that may be a key feature of CB response in CD1d+ tumors.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 606
Author(s):  
Giuseppe Cappellano ◽  
Hugo Abreu ◽  
Chiara Casale ◽  
Umberto Dianzani ◽  
Annalisa Chiocchetti

The first vaccines ever made were based on live-attenuated or inactivated pathogens, either whole cells or fragments. Although these vaccines required the co-administration of antigens with adjuvants to induce a strong humoral response, they could only elicit a poor CD8+ T-cell response. In contrast, next-generation nano/microparticle-based vaccines offer several advantages over traditional ones because they can induce a more potent CD8+ T-cell response and, at the same time, are ideal carriers for proteins, adjuvants, and nucleic acids. The fact that these nanocarriers can be loaded with molecules able to modulate the immune response by inducing different effector functions and regulatory activities makes them ideal tools for inverse vaccination, whose goal is to shut down the immune response in autoimmune diseases. Poly (lactic-co-glycolic acid) (PLGA) and liposomes are biocompatible materials approved by the Food and Drug Administration (FDA) for clinical use and are, therefore, suitable for nanoparticle-based vaccines. Recently, another candidate platform for innovative vaccines based on extracellular vesicles (EVs) has been shown to efficiently co-deliver antigens and adjuvants. This review will discuss the potential use of PLGA-NPs, liposomes, and EVs as carriers of peptides, adjuvants, mRNA, and DNA for the development of next-generation vaccines against endemic and emerging viruses in light of the recent COVID-19 pandemic.


2021 ◽  
Author(s):  
Aline Teixeira ◽  
Alexandria Gillespie ◽  
Alehegne Yirsaw ◽  
Emily Britton ◽  
Janice Telfer ◽  
...  

Pathogenic Leptospira species cause leptospirosis, a neglected zoonotic disease recognized as a global public health problem. It is also the cause of the most common cattle infection that results in major economic losses due to reproductive problems. γδ T cells play a role in the protective immune response in livestock species against Leptospira while human γδ T cells also respond to Leptospira. Thus, activation of γδ T cells has emerged as a potential component for optimization of vaccine strategies. Bovine γδ T cells proliferate and produce IFN-γ in response to vaccination with inactivated leptospires and this response is mediated by a specific subpopulation of the WC1-bearing γδ T cells. WC1 molecules are members of the group B scavenger receptor cysteine rich (SRCR) superfamily and are composed of multiple SRCR domains, of which particular extracellular domains act as ligands for Leptospira. Since WC1 molecules function as both pattern recognition receptors and γδ TCR coreceptors, the WC1 system has been proposed as a novel target to engage γδ T cells. Here, we demonstrate the involvement of leptospiral protein antigens in the activation of WC1+ γδ T cells and identified two leptospiral outer membrane proteins able to interact directly with them. Interestingly, we show that the protein-specific γδ T cell response is composed of WC1.1+ and WC1.2+ subsets, although a greater number of WC1.1+ γδ T cells respond. Identification of protein antigens will enhance our understanding of the role γδ T cells play in the leptospiral immune response and in recombinant vaccine development.


Sign in / Sign up

Export Citation Format

Share Document