scholarly journals Automated Design of Robust Genetic Circuits: Structural Variants and Parameter Uncertainty

2021 ◽  
Author(s):  
Tobias Schladt ◽  
Nicolai Engelmann ◽  
Erik Kubaczka ◽  
Christian Hochberger ◽  
Heinz Koeppl

Genetic design automation methods for combinational circuits often rely on standard algorithms from electronic design automation in their circuit synthesis and technology mapping. However, those algorithms are domain-specific and are hence often not directly suitable for the biological context. In this work we identify aspects of those algorithms that require domain-adaptation. We first demonstrate that enumerating structural variants for a given Boolean specification allows us to find better performing circuits and that stochastic gate assignment methods need to be properly adjusted in order to find the best assignment. Second, we present a general circuit scoring scheme that accounts for the limited accuracy of biological device models including the variability across cells and show that circuits selected according to this score exhibit higher robustness with respect to parametric variations. If gate characteristics in a library are just given in terms of intervals, we provide means to efficiently propagate signals through such a circuit and compute corresponding scores. We demonstrate the novel design approach using the Cello gate library and 33 logic functions that were synthesized and implemented in vivo recently. We show that an average 1.3-fold and a peak 6.5-fold performance increase can be achieved by simply considering structural variants and that an average 1.8-fold and a peak 30-fold gain in the novel robustness score can be obtained when selecting circuits according to it.

2011 ◽  
Vol 8 (4) ◽  
pp. 1229-1250 ◽  
Author(s):  
Haolan Zhang ◽  
Wenhua Zeng ◽  
der van

Intelligent agent-based systems are regarded as the promising technology in bridging the gap between the physical world and cyber-applications. In spite of the rising demands for reusable information systems; current designs are still insufficient in providing efficient reusable mechanisms for system design. One of the major problems hinders the development of information reuse in most traditional systems is the lack of the autonomous character among system modules or subsystems. The emergence of agent technology is able to solve the problem plaguing many traditional systems. Existing agent design models create an agent as a sole system with built-in domain-specific capabilities. However, this design pattern causes several problems while matching and updating agents? capabilities due to the built-in design pattern in these models decreases agents? extensibility, flexibility and reusability. In this paper we introduce a novel design for agent-based systems, which is able to provide an efficient design pattern for improving the reusability, extensibility and flexibility of agent design. The novel agent capability design offers an open and flexible structure; and implements several practical algorithms that can improve the system performance. An experimental program based on several practical cases has been developed to evaluate the performance of the proposed design. The empirical results reveal the efficiency of the new agent design pattern.


1995 ◽  
Vol 74 (06) ◽  
pp. 1501-1510 ◽  
Author(s):  
J Kuiper ◽  
H van de Bilt ◽  
U Martin ◽  
Th J C van Berkel

SummaryThe catabolism of the novel plasminogen activator reteplase (BM 06.022) was described. For this purpose BM 06.022 was radiolabelled with l25I or with the accumulating label l25I-tyramine cellobiose (l25I-TC).BM 06.022 was injected at a pharmacological dose of 380 μg/kg b.w. and it was cleared from the plasma in a biphasic manner with a half-life of about 1 min in the α-phase and t1/2of 20-28 min in the β-phase. 28% and 72% of the injected dose was cleared in the α-phase and β-phase, respectively. Initially liver, kidneys, skin, bones, lungs, spleen, and muscles contributed mainly to the plasma clearance. Only liver and the kidneys, however, were responsible for the uptake and subsequent degradation of BM 06.022 and contributed for 75% to the catabolism of BM 06.022. BM 06.022 was degraded in the lysosomal compartment of both organs. Parenchymal liver cells were responsible for 70% of the liver uptake of BM 06.022. BM 06.022 associated rapidly to isolated rat parenchymal liver cells and was subsequently degraded in the lysosomal compartment of these cells. BM 06.022 bound with low-affinity to the parenchymal liver cells (550 nM) and the binding of BM 06.022 could be displaced by t-PA (IC50 5.6 nM), indicating that the low-density lipoprotein receptor-related protein (LRP) could be involved in the binding of BM 06.022. GST-RAP, which is an inhibitor of LRP, could in vivo significantly inhibit the uptake of BM 06.022 in the liver.It is concluded that BM 06.022 is metabolized primarily in the liver and the kidneys. These organs take up and degrade BM 06.022 in the lysosomes. The uptake mechanism of BM 06.022 in the kidneys is unknown, while LRP is responsible for a low-affinity binding and uptake of BM 06.022 in parenchymal liver cells.


2019 ◽  
Vol 19 (3) ◽  
pp. 147-171
Author(s):  
Cia-Hin Lau ◽  
Chung Tin

Gene therapy and transgenic research have advanced quickly in recent years due to the development of CRISPR technology. The rapid development of CRISPR technology has been largely benefited by chemical engineering. Firstly, chemical or synthetic substance enables spatiotemporal and conditional control of Cas9 or dCas9 activities. It prevents the leaky expression of CRISPR components, as well as minimizes toxicity and off-target effects. Multi-input logic operations and complex genetic circuits can also be implemented via multiplexed and orthogonal regulation of target genes. Secondly, rational chemical modifications to the sgRNA enhance gene editing efficiency and specificity by improving sgRNA stability and binding affinity to on-target genomic loci, and hence reducing off-target mismatches and systemic immunogenicity. Chemically-modified Cas9 mRNA is also more active and less immunogenic than the native mRNA. Thirdly, nonviral vehicles can circumvent the challenges associated with viral packaging and production through the delivery of Cas9-sgRNA ribonucleoprotein complex or large Cas9 expression plasmids. Multi-functional nanovectors enhance genome editing in vivo by overcoming multiple physiological barriers, enabling ligand-targeted cellular uptake, and blood-brain barrier crossing. Chemical engineering can also facilitate viral-based delivery by improving vector internalization, allowing tissue-specific transgene expression, and preventing inactivation of the viral vectors in vivo. This review aims to discuss how chemical engineering has helped improve existing CRISPR applications and enable new technologies for biomedical research. The usefulness, advantages, and molecular action for each chemical engineering approach are also highlighted.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Olanrewaju Ayodeji Durojaye ◽  
Nkwachukwu Oziamara Okoro ◽  
Arome Solomon Odiba

Abstract Background The novel coronavirus SARS-CoV-2 is currently a global threat to health and economies. Therapeutics and vaccines are in rapid development; however, none of these therapeutics are considered as absolute cure, and the potential to mutate makes it necessary to find therapeutics that target a highly conserved regions of the viral structure. Results In this study, we characterized an essential but poorly understood coronavirus accessory X4 protein, a core and stable component of the SARS-CoV family. Sequence analysis shows a conserved ~ 90% identity between the SARS-CoV-2 and previously characterized X4 protein in the database. QMEAN Z score of the model protein shows a value of around 0.5, within the acceptable range 0–1. A MolProbity score of 2.96 was obtained for the model protein and indicates a good quality model. The model has Ramachandran values of φ = − 57o and ψ = − 47o for α-helices and values of φ = − 130o and ψ = + 140o for twisted sheets. Conclusions The protein data obtained from this study provides robust information for further in vitro and in vivo experiment, targeted at devising therapeutics against the virus. Phylogenetic analysis further supports previous evidence that the SARS-CoV-2 is positioned with the SL-CoVZC45, BtRs-BetaCoV/YN2018B and the RS4231 Bat SARS-like corona viruses.


2021 ◽  
Vol 10 (6) ◽  
pp. 1324
Author(s):  
Cosimo Mazzotta ◽  
Marco Ferrise ◽  
Guido Gabriele ◽  
Paolo Gennaro ◽  
Alessandro Meduri

The purpose of this study was to evaluate the effectiveness and safety of a novel buffered riboflavin solution approved for corneal cross-linking (CXL) in progressive keratoconus and secondary corneal ectasia. Following the in vivo preclinical study performed on New Zealand rabbits comparing the novel 0.25% riboflavin solution (Safecross®) containing 1% hydroxypropyl methylcellulose (HPMC) with a 0.25% riboflavin solution containing 0.10% EDTA, accelerated epithelium-off CXL was performed on 10 patients (10 eyes treated, with the contralateral eye used as control) through UV-A at a power setting of 9 mW/cm2 with a total dose of 5.4 J/cm2. Re-epithelialization was evaluated in the postoperative 7 days by fluorescein dye test at biomicroscopy; endothelial cell count and morphology (ECD) were analyzed by specular microscopy at the 1st and 6th month of follow-up and demarcation line depth (DLD) measured by anterior segment optical coherence tomography (AS-OCT) one month after the treatment. We observed complete re-epithelization in all eyes between 72 and 96 h after surgery (88 h on average). ECD and morphology remained unchanged in all eyes. DLD was detected at a mean depth of 362 ± 50 µm, 20% over solutions with equivalent dosage. SafeCross® riboflavin solution chemically-boosted corneal cross-linking seems to optimize CXL oxidative reaction by higher superoxide anion release, improving DLD by a factor of 20%, without adverse events for corneal endothelium.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 725
Author(s):  
Saeyeong Jeon ◽  
Youjin Lee ◽  
Daeho Ryu ◽  
Yoon Kyung Cho ◽  
Yena Lee ◽  
...  

During the last decade, optogenetics has become an essential tool for neuroscience research due to its unrivaled feature of cell-type-specific neuromodulation. There have been several technological advances in light delivery devices. Among them, the combination of optogenetics and electrophysiology provides an opportunity for facilitating optogenetic approaches. In this study, a novel design of an optrode array was proposed for realizing optical modulation and electrophysiological recording. A 4 × 4 optrode array and five-channel recording electrodes were assembled as a disposable part, while a reusable part comprised an LED (light-emitting diode) source and a power line. After the characterization of the intensity of the light delivered at the fiber tips, in vivo animal experiment was performed with transgenic mice expressing channelrhodopsin, showing the effectiveness of optical activation and neural recording.


2021 ◽  
Vol 26 (3) ◽  
pp. 349-361
Author(s):  
Napoleon-Nikolaos Vrettos ◽  
Peng Wang ◽  
Yan Zhou ◽  
Clive J. Roberts ◽  
Jinyi Xu ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 336
Author(s):  
Mohammed Ghiboub ◽  
Ahmed M. I. Elfiky ◽  
Menno P. J. de Winther ◽  
Nicola R. Harker ◽  
David F. Tough ◽  
...  

Histone deacetylases (HDACs) and bromodomain-containing proteins (BCPs) play a key role in chromatin remodeling. Based on their ability to regulate inducible gene expression in the context of inflammation and cancer, HDACs and BCPs have been the focus of drug discovery efforts, and numerous small-molecule inhibitors have been developed. However, dose-limiting toxicities of the first generation of inhibitors, which typically target multiple HDACs or BCPs, have limited translation to the clinic. Over the last decade, an increasing effort has been dedicated to designing class-, isoform-, or domain-specific HDAC or BCP inhibitors, as well as developing strategies for cell-specific targeted drug delivery. Selective inhibition of the epigenetic modulators is helping to elucidate the functions of individual epigenetic proteins and has the potential to yield better and safer therapeutic strategies. In accordance with this idea, several in vitro and in vivo studies have reported the ability of more selective HDAC/BCP inhibitors to recapitulate the beneficial effects of pan-inhibitors with less unwanted adverse events. In this review, we summarize the most recent advances with these strategies, discussing advantages and limitations of these approaches as well as some therapeutic perspectives, focusing on autoimmune and inflammatory diseases.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2045
Author(s):  
Agnieszka Gornowicz ◽  
Anna Szymanowska ◽  
Mariusz Mojzych ◽  
Robert Czarnomysy ◽  
Krzysztof Bielawski ◽  
...  

Cancer therapy is one of the most important challenges of modern medical and chemical sciences. Among the many methods of combating cancer, chemotherapy plays a special role. Imperfect modern chemotherapy justifies continuing the search for new, more effective, and safe drugs. Sulfonamides are the classic group of chemotherapeutic drugs with a broad spectrum of pharmacological activity. Recent literature reports show that sulfonamide derivatives have anti-tumor activity in vitro and in vivo. The aim of the study was to synthesize a novel 1,2,4-triazine sulfonamide derivative and check its anticancer potential in DLD-1 and HT-29 colon cancer cells. The biological studies included MTT assay, DNA biosynthesis, cell cycle analysis, Annexin V binding assay, ethidium bromide/acridine orange staining, and caspase-8, -9, and -3/7 activity. The concentrations of important molecules (sICAM-1, mTOR, Beclin-1, cathepsin B) involved in the pathogenesis and poor prognosis of colorectal cancer were also evaluated by ELISA. We demonstrated that the novel compound was able to induce apoptosis through intrinsic and extrinsic pathways and was capable of decreasing sICAM-1, mTOR, cathepsin B concentrations, whereas increased Beclin-1 concentration was detected in both colon cancer cell lines. The novel compound represents promising multi-targeted potential in colorectal cancer, but further in vivo examinations are needed to confirm the claim.


2012 ◽  
Vol 32 (6) ◽  
pp. 559-566 ◽  
Author(s):  
Yan Xu ◽  
Feng Zhi ◽  
Guangming Xu ◽  
Xiaolei Tang ◽  
Sheng Lu ◽  
...  

MDR (multidrug-resistance) represents a major obstacle to successful cancer chemotherapy and is usually accomplished by overexpression of P-gp (P-glycoprotein). Much effort has been devoted to developing P-gp inhibitors to modulate MDR. However, none of the inhibitors on the market have been successful. 1416 [1-(2,6-dimethylphenoxy)-2-(3,4-dimethoxyphenylethylamino)propane hydrochloride (phenoprolamine hydrochloride)] is a new VER (verapamil) analogue with a higher IC50 for blocking calcium channel currents than VER. In the present paper, we examined the inhibition effect of 1416 on P-gp both in vitro and in vivo. 1416 significantly enhanced cytotoxicity of VBL (vinblastine) in P-gp-overexpressed human multidrug-resistant K562/ADM (adriamycin) and KBV cells, but had no such effect on the parent K562 and KB cells. The MDR-modulating function of 1416 was further confirmed by increasing intracellular Rh123 (rhodanmine123) content in MDR cells. Human K562/ADM xenograft-nude mice model verified that 1416 potentiates the antitumour activity of VBL in vivo. RT-PCR (reverse transcriptase-PCR) and FACS analysis demonstrated that the expression of MDR1/P-gp was not affected by 1416 treatment. All these observations suggest that 1416 could be a promising agent for overcoming MDR in cancer chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document