scholarly journals Columnar localization and laminar origin of cortical surface electrical potentials

2021 ◽  
Author(s):  
Vyassa L Baratham ◽  
Maximilian E Dougherty ◽  
Peter Ledochowitsch ◽  
Michele M Maharbiz ◽  
Kristofer Bouchard

Electrocorticography (ECoG) methodologically bridges basic neuroscience and understanding of human brains in health and disease. However, the localization of ECoG signals across the surface of the brain and the spatial distribution of their generating neuronal sources are poorly understood. To address this gap, we recorded from rat auditory cortex using customized microECoG, and simulated cortical surface electrical potentials with a full-scale, biophysically detailed cortical column model. Experimentally, microECoG-derived auditory representations were tonotopically organized and signals were anisotropically localized to 200 micrometers, i.e., a single cortical column. Biophysical simulations reproduce experimental findings, and indicate that neurons in cortical layers V and VI contribute ~85% of evoked high-gamma signal recorded at the surface. Cell number and synchronicity were the primary biophysical properties determining laminar contributions to evoked microECoG signals, while distance was only a minimal factor. Thus, evoked microECoG signals primarily originate from neurons in the infragranular layers of a single cortical column.

Author(s):  
Jair Leopoldo Raso

Abstract Introduction The precise identification of anatomical structures and lesions in the brain is the main objective of neuronavigation systems. Brain shift, displacement of the brain after opening the cisterns and draining cerebrospinal fluid, is one of the limitations of such systems. Objective To describe a simple method to avoid brain shift in craniotomies for subcortical lesions. Method We used the surgical technique hereby described in five patients with subcortical neoplasms. We performed the neuronavigation-guided craniotomies with the conventional technique. After opening the dura and exposing the cortical surface, we placed two or three arachnoid anchoring sutures to the dura mater, close to the edges of the exposed cortical surface. We placed these anchoring sutures under microscopy, using a 6–0 mononylon wire. With this technique, the cortex surface was kept close to the dura mater, minimizing its displacement during the approach to the subcortical lesion. In these five cases we operated, the cortical surface remained close to the dura, anchored by the arachnoid sutures. All the lesions were located with a good correlation between the handpiece tip inserted in the desired brain area and the display on the navigation system. Conclusion Arachnoid anchoring sutures to the dura mater on the edges of the cortex area exposed by craniotomy constitute a simple method to minimize brain displacement (brain-shift) in craniotomies for subcortical injuries, optimizing the use of the neuronavigation system.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 142
Author(s):  
Mariella Cuomo ◽  
Luca Borrelli ◽  
Rosa Della Monica ◽  
Lorena Coretti ◽  
Giulia De Riso ◽  
...  

The bidirectional microbiota–gut–brain axis has raised increasing interest over the past years in the context of health and disease, but there is a lack of information on molecular mechanisms underlying this connection. We hypothesized that change in microbiota composition may affect brain epigenetics leading to long-lasting effects on specific brain gene regulation. To test this hypothesis, we used Zebrafish (Danio Rerio) as a model system. As previously shown, treatment with high doses of probiotics can modulate behavior in Zebrafish, causing significant changes in the expression of some brain-relevant genes, such as BDNF and Tph1A. Using an ultra-deep targeted analysis, we investigated the methylation state of the BDNF and Tph1A promoter region in the brain and gut of probiotic-treated and untreated Zebrafishes. Thanks to the high resolution power of our analysis, we evaluated cell-to-cell methylation differences. At this resolution level, we found slight DNA methylation changes in probiotic-treated samples, likely related to a subgroup of brain and gut cells, and that specific DNA methylation signatures significantly correlated with specific behavioral scores.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Klaudia Pawlina-Tyszko ◽  
Maria Oczkowicz ◽  
Artur Gurgul ◽  
Tomasz Szmatoła ◽  
Monika Bugno-Poniewierska

Abstract Background MicroRNAs indirectly orchestrate myriads of essential biological processes. A wide diversity of miRNAs of the neurodevelopmental importance characterizes the brain tissue, which, however, exhibits region-specific miRNA profile differences. One of the most conservative regions of the brain is periaqueductal grey (PAG) playing vital roles in significant functions of this organ, also those observed to be sex-influenced. The domestic pig is an important livestock species but is also believed to be an excellent human model. This is of particular importance for neurological research because of the similarity of pig and human brains as well as difficult access to human samples. However, the pig PAG profile has not been characterized so far. Moreover, molecular bases of sex differences connected with brain functioning, including miRNA expression profiles, have not been fully deciphered yet. Methods Thus, in this study, we applied next-generation sequencing to characterize pig PAG expressed microRNAs. Furthermore, we performed differential expression analysis between females and males to identify changes of the miRNA profile and reveal candidates underlying sex-related differences. Results As a result, known brain-enriched, and new miRNAs which will expand the available profile, were identified. The downstream analysis revealed 38 miRNAs being differentially expressed (DE) between female and male samples. Subsequent pathway analysis showed that they enrich processes vital for neuron growth and functioning, such as long-term depression and axon guidance. Among the identified sex-influenced miRNAs were also those associated with the PAG physiology and diseases related to this region. Conclusions The obtained results broaden the knowledge on the porcine PAG miRNAome, along with its dynamism reflected in different isomiR signatures. Moreover, they indicate possible mechanisms associated with sex-influenced differences mediated via miRNAs in the PAG functioning. They also provide candidate miRNAs for further research concerning, i.e., sex-related bases of physiological and pathological processes occurring in the nervous system. Graphical abstract


2021 ◽  
Vol 22 (13) ◽  
pp. 6858
Author(s):  
Fanny Gaudel ◽  
Gaëlle Guiraudie-Capraz ◽  
François Féron

Animals strongly rely on chemical senses to uncover the outside world and adjust their behaviour. Chemical signals are perceived by facial sensitive chemosensors that can be clustered into three families, namely the gustatory (TASR), olfactory (OR, TAAR) and pheromonal (VNR, FPR) receptors. Over recent decades, chemoreceptors were identified in non-facial parts of the body, including the brain. In order to map chemoreceptors within the encephalon, we performed a study based on four brain atlases. The transcript expression of selected members of the three chemoreceptor families and their canonical partners was analysed in major areas of healthy and demented human brains. Genes encoding all studied chemoreceptors are transcribed in the central nervous system, particularly in the limbic system. RNA of their canonical transduction partners (G proteins, ion channels) are also observed in all studied brain areas, reinforcing the suggestion that cerebral chemoreceptors are functional. In addition, we noticed that: (i) bitterness-associated receptors display an enriched expression, (ii) the brain is equipped to sense trace amines and pheromonal cues and (iii) chemoreceptor RNA expression varies with age, but not dementia or brain trauma. Extensive studies are now required to further understand how the brain makes sense of endogenous chemicals.


2021 ◽  
Vol 46 (1) ◽  
pp. 77-87
Author(s):  
Arnaud Tauffenberger ◽  
Pierre J. Magistretti

AbstractCellular homeostasis plays a critical role in how an organism will develop and age. Disruption of this fragile equilibrium is often associated with health degradation and ultimately, death. Reactive oxygen species (ROS) have been closely associated with health decline and neurological disorders, such as Alzheimer’s disease or Parkinson’s disease. ROS were first identified as by-products of the cellular activity, mainly mitochondrial respiration, and their high reactivity is linked to a disruption of macromolecules such as proteins, lipids and DNA. More recent research suggests more complex function of ROS, reaching far beyond the cellular dysfunction. ROS are active actors in most of the signaling cascades involved in cell development, proliferation and survival, constituting important second messengers. In the brain, their impact on neurons and astrocytes has been associated with synaptic plasticity and neuron survival. This review provides an overview of ROS function in cell signaling in the context of aging and degeneration in the brain and guarding the fragile balance between health and disease.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Petra Mohácsik ◽  
Anikó Zeöld ◽  
Antonio C. Bianco ◽  
Balázs Gereben

Thyroid hormone plays a crucial role in the development and function of the nervous system. In order to bind to its nuclear receptor and regulate gene transcription thyroxine needs to be activated in the brain. This activation occurs via conversion of thyroxine to T3, which is catalyzed by the type 2 iodothyronine deiodinase (D2) in glial cells, in astrocytes, and tanycytes in the mediobasal hypothalamus. We discuss how thyroid hormone affects glial cell function followed by an overview on the fine-tuned regulation of T3 generation by D2 in different glial subtypes. Recent evidence on the direct paracrine impact of glial D2 on neuronal gene expression underlines the importance of glial-neuronal interaction in thyroid hormone regulation as a major regulatory pathway in the brain in health and disease.


1882 ◽  
Vol 33 (216-219) ◽  
pp. 15-21

I have endeavoured in this abstract to summarise the results of my recent researches into the minute structure of the brain in the smaller Rodents. The pig and sheep, which were the subjects of my former memoir, possess a highly developed olfactory apparatus conjoined to a well convoluted cortical surface; but in the smaller animals now under consideration the surface of the hemispheres is almost perfectly smooth, while the olfactory organ, from its comparative size and complex relationship, has an important part to play in the architecture of the brain. Animals possessing the latter type of cerebrum have been classed together as the Osmatic Lissencéphales, in contradistinction to those which were the subject of my former enquiries, the Osmatic Gyren-céphales. My researches into the structure of the brain of prominent members of the former group, viz., the rabbit and rat, may be considered under two heads:— ( a .) The histology of the complete cortical envelope.


Sign in / Sign up

Export Citation Format

Share Document