scholarly journals Direct Observation of Anisotropy-Driven Formation of Amyloid Protein Core-Shell Structures in Real-time by Super-resolution Microscopy

2021 ◽  
Author(s):  
Min Zhang ◽  
Henrik Dahl Pinholt ◽  
Xin Zhou ◽  
Soeren S-R Bohr ◽  
Luca Banneta ◽  
...  

Proteins misfolding and aggregation in the form of fibrils or amyloid containing spherulite-like structures, are involved in a spectrum of degenerative diseases. Current understanding of protein aggregation mechanism primarily relies on conventional spectrometric methods reporting the average growth rates and microscopy readouts of final structures, consequently masking the morphological and growth heterogeneity of the aggregates. Here we developed REal-time kinetics via binding and Photobleaching LOcalization Microscopy (REPLOM) super resolution method to observe directly and quantify the existence and abundance of diverse aggregation morphologies as well as the heterogeneous growth kinetics of each of them. Our results surprisingly revealed insulin aggregation is not exclusively isotropic, but it may also occur anisotropically. Combined with Machine learning we associated growth rates to specific morphological transitions and provided energy barriers and the energy landscape for each aggregation morphology. Our unifying framework of detection and analysis of spherulite growth can be extended to other protein systems and reveal their aggregation processes at single molecule level.

Author(s):  
Matthieu Lagardère ◽  
Ingrid Chamma ◽  
Emmanuel Bouilhol ◽  
Macha Nikolski ◽  
Olivier Thoumine

AbstractFluorescence live-cell and super-resolution microscopy methods have considerably advanced our understanding of the dynamics and mesoscale organization of macro-molecular complexes that drive cellular functions. However, different imaging techniques can provide quite disparate information about protein motion and organization, owing to their respective experimental ranges and limitations. To address these limitations, we present here a unified computer program that allows one to model and predict membrane protein dynamics at the ensemble and single molecule level, so as to reconcile imaging paradigms and quantitatively characterize protein behavior in complex cellular environments. FluoSim is an interactive real-time simulator of protein dynamics for live-cell imaging methods including SPT, FRAP, PAF, and FCS, and super-resolution imaging techniques such as PALM, dSTORM, and uPAINT. The software, thoroughly validated against experimental data on the canonical neurexin-neuroligin adhesion complex, integrates diffusion coefficients, binding rates, and fluorophore photo-physics to calculate in real time the distribution of thousands of independent molecules in 2D cellular geometries, providing simulated data of protein dynamics and localization directly comparable to actual experiments.


2018 ◽  
Author(s):  
Gerti Beliu ◽  
Andreas Kurz ◽  
Alexander Kuhlemann ◽  
Lisa Behringer-Pliess ◽  
Natalia Wolf ◽  
...  

Genetic code expansion (GCE) technology allows the specific incorporation of functionalized noncanonical amino acids (ncAAs) into proteins. Here, we investigated the Diels-Alder reaction between trans-cyclooct-2-ene (TCO)-modified ncAAs, and 22 known and novel 1,2,4,5-tetrazine-dye conjugates spanning the entire visible wavelength range. A hallmark of this reaction is its fluorogenicity - the tetrazine moiety can elicit substantial quenching of the dye. We discovered that photoinduced electron transfer (PET) from the excited dye to tetrazine as the main quenching mechanism in red-absorbing oxazine and rhodamine derivatives. Upon reaction with dienophiles quenching interactions are reduced resulting in a considerable increase in fluorescence intensity. Efficient and specific labeling of all tetrazine-dyes investigated permits super-resolution microscopy with high signal-to-noise ratio even at the single-molecule level. The different cell permeability of tetrazine-dyes can be used advantageously for specific intra- and extracellular labeling of proteins and highly sensitive fluorescence imaging experiments in fixed and living cells.


Nanoscale ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 4128-4136 ◽  
Author(s):  
Matěj Horáček ◽  
Dion J. Engels ◽  
Peter Zijlstra

We provide a super-resolution microscopy method to characterize the chemical interface of nanoparticles at the single-molecule level. This provides a direct quantification and optimization of functionalization protocols for bio-medical applications.


PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e62918 ◽  
Author(s):  
Adel Kechkar ◽  
Deepak Nair ◽  
Mike Heilemann ◽  
Daniel Choquet ◽  
Jean-Baptiste Sibarita

2015 ◽  
Vol 43 (3) ◽  
pp. 315-321 ◽  
Author(s):  
Michael J. Shannon ◽  
Garth Burn ◽  
Andrew Cope ◽  
Georgina Cornish ◽  
Dylan M. Owen

T-cell protein microclusters have until recently been investigable only as microscale entities with their composition and structure being discerned by biochemistry or diffraction-limited light microscopy. With the advent of super resolution microscopy comes the ability to interrogate the structure and function of these clusters at the single molecule level by producing highly accurate pointillist maps of single molecule locations at ~20nm resolution. Analysis tools have also been developed to provide rich descriptors of the pointillist data, allowing us to pose questions about the nanoscale organization which governs the local and cell wide responses required of a migratory T-cell.


2018 ◽  
Author(s):  
Nicholas Boyd ◽  
Eric Jonas ◽  
Hazen Babcock ◽  
Benjamin Recht

AbstractSingle-molecule localization super-resolution microscopy (SMLM) techniques like STORM and PALM have transformed cellular microscopy by substantially increasing spatial resolution. In this paper we introduce a new algorithm for a critical part of the SMLM process: estimating the number and locations of the fluorophores in a single frame. Our algorithm can analyze a 20000-frame experimental 3D SMLM dataset in about one second — substantially faster than real-time and existing algorithms. Our approach is straightforward but very different from existing algorithms: we train a neural network to minimize the Bayes’ risk under a generative model for single SMLM frames. The neural network maps a frame directly to a collection of fluorophore locations, which we compare to the ground truth using a novel loss function. While training the neural network takes several hours, it only has to be done once for a given experimental setup. After training, localizing fluorophores in new images is extremely fast — orders of magnitude faster than existing algorithms. Faster recovery opens the door to real-time calibration and accelerated acquisition, and future work could tackle more complicated optical systems and more realistic simulators.


2018 ◽  
Author(s):  
Jasper H. M. van der Velde ◽  
Jochem Smit ◽  
Michiel Punter ◽  
Thorben Cordes

AbstractIn recent years optical microscopy techniques have emerged that allow optical imaging at unprecented resolution beyond the diffraction limit. Up to date, photostabilizing buffers are the method of choice to realize either photoswitching and/or to enhance the signal brightness and stability of the employed fluorescent probes. This strategy has, however, restricted applicability and is not suitable for live cell imaging. In this paper, we tested the performance of self-healing organic fluorophores with intramolecular photostabilization in super-resolution microscopy with targeted (STED) and stochastic readout (STORM). The overall goal of the study was to improve the spatial and temporal resolution of both techniques without the need for mixtures of photostabilizing agents in the imaging buffer. Due to its past superior performance we identified ATTO647N-photostabilizer conjugates as suitable candidates for STED microscopy. We characterize the photostability and resulting performance of NPA-ATTO647N oligonucleotide conjugates in STED microscopy. We find that the superior photophysical performance results in optimal STED imaging and demonstrate the possibility to obtain single-molecule fluorescent transients of individual fluorophores while illuminating with both the excitation- and STED-laser. Secondly, we show an analysis of photoswitching kinetics of self-healing Cy5 dyes (comprising TX, COT and NPA stabilizers) in the presence of TCEP- and cysteamine, which are typically used in STORM microscopy. In line with previous work, we find that intramolecular photostabilization strongly influences photoswitching kinetics and requires careful attention when designing STORM-experiments. In summary, this contribution explores the possibilities and limitations of self-healing dyes in super-resolution microscopy of differing modalities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anne-Bart Seinen ◽  
Dian Spakman ◽  
Antoine M. van Oijen ◽  
Arnold J. M. Driessen

AbstractIn bacteria, the SecA ATPase provides the driving force for protein secretion via the SecYEG translocon. While the dynamic interplay between SecA and SecYEG in translocation is widely appreciated, it is not clear how SecA associates with the translocon in the crowded cellular environment. We use super-resolution microscopy to directly visualize the dynamics of SecA in Escherichia coli at the single-molecule level. We find that SecA is predominantly associated with and evenly distributed along the cytoplasmic membrane as a homodimer, with only a minor cytosolic fraction. SecA moves along the cell membrane as three distinct but interconvertible diffusional populations: (1) A state loosely associated with the membrane, (2) an integral membrane form, and (3) a temporarily immobile form. Disruption of the proton-motive-force, which is essential for protein secretion, re-localizes a significant portion of SecA to the cytoplasm and results in the transient location of SecA at specific locations at the membrane. The data support a model in which SecA diffuses along the membrane surface to gain access to the SecYEG translocon.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jagadish Sankaran ◽  
Harikrushnan Balasubramanian ◽  
Wai Hoh Tang ◽  
Xue Wen Ng ◽  
Adrian Röllin ◽  
...  

AbstractSuper-resolution microscopy and single molecule fluorescence spectroscopy require mutually exclusive experimental strategies optimizing either temporal or spatial resolution. To achieve both, we implement a GPU-supported, camera-based measurement strategy that highly resolves spatial structures (~100 nm), temporal dynamics (~2 ms), and molecular brightness from the exact same data set. Simultaneous super-resolution of spatial and temporal details leads to an improved precision in estimating the diffusion coefficient of the actin binding polypeptide Lifeact and corrects structural artefacts. Multi-parametric analysis of epidermal growth factor receptor (EGFR) and Lifeact suggests that the domain partitioning of EGFR is primarily determined by EGFR-membrane interactions, possibly sub-resolution clustering and inter-EGFR interactions but is largely independent of EGFR-actin interactions. These results demonstrate that pixel-wise cross-correlation of parameters obtained from different techniques on the same data set enables robust physicochemical parameter estimation and provides biological knowledge that cannot be obtained from sequential measurements.


2021 ◽  
Vol 22 (4) ◽  
pp. 1903
Author(s):  
Ivona Kubalová ◽  
Alžběta Němečková ◽  
Klaus Weisshart ◽  
Eva Hřibová ◽  
Veit Schubert

The importance of fluorescence light microscopy for understanding cellular and sub-cellular structures and functions is undeniable. However, the resolution is limited by light diffraction (~200–250 nm laterally, ~500–700 nm axially). Meanwhile, super-resolution microscopy, such as structured illumination microscopy (SIM), is being applied more and more to overcome this restriction. Instead, super-resolution by stimulated emission depletion (STED) microscopy achieving a resolution of ~50 nm laterally and ~130 nm axially has not yet frequently been applied in plant cell research due to the required specific sample preparation and stable dye staining. Single-molecule localization microscopy (SMLM) including photoactivated localization microscopy (PALM) has not yet been widely used, although this nanoscopic technique allows even the detection of single molecules. In this study, we compared protein imaging within metaphase chromosomes of barley via conventional wide-field and confocal microscopy, and the sub-diffraction methods SIM, STED, and SMLM. The chromosomes were labeled by DAPI (4′,6-diamidino-2-phenylindol), a DNA-specific dye, and with antibodies against topoisomerase IIα (Topo II), a protein important for correct chromatin condensation. Compared to the diffraction-limited methods, the combination of the three different super-resolution imaging techniques delivered tremendous additional insights into the plant chromosome architecture through the achieved increased resolution.


Sign in / Sign up

Export Citation Format

Share Document