scholarly journals Legionella pneumophila regulates host cell motility by targeting Phldb2 with a 14-3-3ζ-dependent protease effector

2021 ◽  
Author(s):  
Lei Song ◽  
Jingjing Luo ◽  
Dan Huang ◽  
Yunhao Tan ◽  
Yao Liu ◽  
...  

The cytoskeleton network of eukaryotic cells is essential for diverse cellular processes, including vesicle trafficking, cell motility and immunity, thus is a common target for bacterial virulence factors. A number of effectors from the bacterial pathogen Legionella pneumophila have been shown to modulate the function of host actin cytoskeleton to construct the Legionella-containing vacuole (LCV) permissive for its intracellular replication. In this study, we identified the Dot/Icm effector Lem8 (Lpg1290) as a protease that interferes with host motility. We show that the protease activity of Lem8 is catalyzed by a Cys-His-Asp motif known to be associated with diverse biochemical activities. Intriguingly, we found that Lem8 interacts with the host regulatory protein 14-3-3ζ, which activates its protease activity. Furthermore, Lem8 undergoes self-cleavage in a process that requires 14-3-3ζ. We identified the PH domain-containing protein Phldb2 involved in cell migration as a target of Lem8 and demonstrate that Lem8 plays a role in the inhibition of host cell migration. Our results reveal a novel mechanism of inhibiting host cell motility by L. pneumophila for its virulence.

2019 ◽  
Vol 88 (3) ◽  
Author(s):  
Bhavna Padmanabhan ◽  
Laura F. Fielden ◽  
Abderrahman Hachani ◽  
Patrice Newton ◽  
David R. Thomas ◽  
...  

ABSTRACT Coxiella burnetii is an obligate intracellular bacterial pathogen that replicates inside the lysosome-derived Coxiella-containing vacuole (CCV). To establish this unique niche, C. burnetii requires the Dot/Icm type IV secretion system (T4SS) to translocate a cohort of effector proteins into the host cell, which modulate multiple cellular processes. To characterize the host-pathogen interactions that occur during C. burnetii infection, stable-isotope labeling by amino acids in cell culture (SILAC)-based proteomics was used to identify changes in the host proteome during infection of a human-derived macrophage cell line. These data revealed that the abundances of many proteins involved in host cell autophagy and lysosome biogenesis were increased in infected cells. Thus, the role of the host transcription factors TFEB and TFE3, which regulate the expression of a network of genes involved in autophagy and lysosomal biogenesis, were examined in the context of C. burnetii infection. During infection with C. burnetii, both TFEB and TFE3 were activated, as demonstrated by the transport of these proteins from the cytoplasm into the nucleus. The nuclear translocation of these transcription factors was shown to be dependent on the T4SS, as a Dot/Icm mutant showed reduced nuclear translocation of TFEB and TFE3. This was supported by the observation that blocking bacterial translation with chloramphenicol resulted in the movement of TFEB and TFE3 back into the cytoplasm. Silencing of the TFEB and TFE3 genes, alone or in combination, significantly reduced the size of the CCV, which indicates that these host transcription factors facilitate the expansion and maintenance of the organelle that supports C. burnetii intracellular replication.


Science ◽  
2006 ◽  
Vol 311 (5759) ◽  
pp. 377-381 ◽  
Author(s):  
Ferran Valderrama ◽  
João V. Cordeiro ◽  
Sibylle Schleich ◽  
Friedrich Frischknecht ◽  
Michael Way

RhoA signaling plays a critical role in many cellular processes, including cell migration. Here we show that the vaccinia F11L protein interacts directly with RhoA, inhibiting its signaling by blocking the interaction with its downstream effectors Rho-associated kinase (ROCK) and mDia. RNA interference–mediated depletion of F11L during infection resulted in an absence of vaccinia-induced cell motility and inhibition of viral morphogenesis. Disruption of the RhoA binding site in F11L, which resembles that of ROCK, led to an identical phenotype. Thus, inhibition of RhoA signaling is required for both vaccinia morphogenesis and virus-induced cell motility.


2015 ◽  
Vol 61 (9) ◽  
pp. 617-635 ◽  
Author(s):  
Ernest C. So ◽  
Corinna Mattheis ◽  
Edward W. Tate ◽  
Gad Frankel ◽  
Gunnar N. Schroeder

The Gram-negative facultative intracellular pathogen Legionella pneumophila infects a wide range of different protozoa in the environment and also human alveolar macrophages upon inhalation of contaminated aerosols. Inside its hosts, it creates a defined and unique compartment, termed the Legionella-containing vacuole (LCV), for survival and replication. To establish the LCV, L. pneumophila uses its Dot/Icm type IV secretion system (T4SS) to translocate more than 300 effector proteins into the host cell. Although it has become apparent in the past years that these effectors subvert a multitude of cellular processes and allow Legionella to take control of host cell vesicle trafficking, transcription, and translation, the exact function of the vast majority of effectors still remains unknown. This is partly due to high functional redundancy among the effectors, which renders conventional genetic approaches to elucidate their role ineffective. Here, we review the current knowledge about Legionella T4SS effectors, highlight open questions, and discuss new methods that promise to facilitate the characterization of T4SS effector functions in the future.


2019 ◽  
Author(s):  
M. Lauren Donnelly ◽  
Emily R. Forster ◽  
Amy E. Rohlfing ◽  
Aimee Shen

AbstractClostridioides difficile is a spore-forming bacterial pathogen that is the leading cause of hospital-acquired gastroenteritis. C. difficile infections begin when its spore form germinates in the vertebrate gut upon sensing bile acids. These germinants induce a proteolytic signaling cascade controlled by three members of the subtilisin-like serine protease family, CspA, CspB, and CspC. Notably, even though CspC and CspA are both pseudoproteases, they are nevertheless required to sense germinants and activate the protease, CspB. Thus, CspC and CspA are part of a growing list of pseudoenzymes that play important roles in regulating cellular processes. However, despite their importance, the structural properties of pseudoenzymes that allow them to function as regulators remain poorly understood. Our recently determined crystal structure of CspC revealed that its degenerate site residues align closely with the catalytic triad of CspB, so in this study we tested whether the ancestral protease activity of the CspC and CspA pseudoproteases could be “resurrected.” Restoring the catalytic triad to these pseudoproteases failed to resurrect their protease activity, although the mutations differentially affected the stability and function of these pseudoproteases. Degenerate site mutations destabilized CspC and impaired spore germination without impacting CspA stability or function. Thus, our results surprisingly reveal that the presence of a catalytic triad does not necessarily predict protease activity. Since close homologs of C. difficile CspA occasionally carry an intact catalytic triad, our results imply that bioinformatics predictions of enzyme activity may overlook pseudoenzymes in some cases.


2020 ◽  
Vol 477 (8) ◽  
pp. 1459-1478
Author(s):  
M. Lauren Donnelly ◽  
Emily R. Forster ◽  
Amy E. Rohlfing ◽  
Aimee Shen

Clostridioides difficile is a spore-forming bacterial pathogen that is the leading cause of hospital-acquired gastroenteritis. C. difficile infections begin when its spore form germinates in the gut upon sensing bile acids. These germinants induce a proteolytic signaling cascade controlled by three members of the subtilisin-like serine protease family, CspA, CspB, and CspC. Notably, even though CspC and CspA are both pseudoproteases, they are nevertheless required to sense germinants and activate the protease, CspB. Thus, CspC and CspA are part of a growing list of pseudoenzymes that play important roles in regulating cellular processes. However, despite their importance, the structural properties of pseudoenzymes that allow them to function as regulators remain poorly understood. Our recently solved crystal structure of CspC revealed that its pseudoactive site residues align closely with the catalytic triad of CspB, suggesting that it might be possible to ‘resurrect' the ancestral protease activity of the CspC and CspA pseudoproteases. Here, we demonstrate that restoring the catalytic triad to these pseudoproteases fails to resurrect their protease activity. We further show that the pseudoactive site substitutions differentially affect the stability and function of the CspC and CspA pseudoproteases: the substitutions destabilized CspC and impaired spore germination without affecting CspA stability or function. Thus, our results surprisingly reveal that the presence of a catalytic triad does not necessarily predict protease activity. Since homologs of C. difficile CspA occasionally carry an intact catalytic triad, our results indicate that bioinformatic predictions of enzyme activity may underestimate pseudoenzymes in rare cases.


2021 ◽  
Author(s):  
Rebecca R. Noll ◽  
Colleen M. Pike ◽  
Stephanie S. Lehman ◽  
Chad Williamson ◽  
Ramona Neunuebel

Autophagy is a fundamental eukaryotic process that mediates clearance of unwanted molecules and facilitates nutrient release. The bacterial pathogen Legionella pneumophila establishes an intracellular niche within phagocytes by manipulating host cellular processes, such as autophagy. Effector proteins translocated by L. pneumophila's Dot/Icm type IV secretion system have been shown to suppress autophagy. However evidence suggests that overall inhibition of autophagy may be detrimental to the bacterium. As autophagy contributes to cellular homeostasis and nutrient acquisition, L. pneumophila may translocate effectors that promote autophagy for these benefits. Here, we show that effector protein Lpg2411 binds phosphatidylinositol-3-phosphate lipids and preferentially binds autophagosomes. Translocated Lpg2411 accumulates late during infection and co-localizes with the autophagy receptor p62 and ubiquitin. Furthermore, autophagy is inhibited to a greater extent in host cells infected with a mutant strain lacking Lpg2411 compared to those infected with wild-type L. pneumophila, indicating that Lpg2411 stimulates autophagy to support the bacterium's intracellular lifestyle.


2011 ◽  
Vol 195 (1) ◽  
pp. 7-17 ◽  
Author(s):  
Cat M. Haglund ◽  
Matthew D. Welch

Intracellular pathogens subvert the host cell cytoskeleton to promote their own survival, replication, and dissemination. Study of these microbes has led to many discoveries about host cell biology, including the identification of cytoskeletal proteins, regulatory pathways, and mechanisms of cytoskeletal function. Actin is a common target of bacterial pathogens, but recent work also highlights the use of microtubules, cytoskeletal motors, intermediate filaments, and septins. The study of pathogen interactions with the cytoskeleton has illuminated key cellular processes such as phagocytosis, macropinocytosis, membrane trafficking, motility, autophagy, and signal transduction.


2015 ◽  
Vol 43 (1) ◽  
pp. 129-132 ◽  
Author(s):  
Douwe M. Veltman

The cytoskeleton is utilized for a variety of cellular processes, including migration, endocytosis and adhesion. The required molecular components are often shared between different processes, but it is not well understood how the cells balance their use. We find that macropinocytosis and cell migration are negatively correlated. Heavy drinkers move only slowly and vice versa, fast cells do not take big gulps. Both processes are balanced by the lipid phosphatidylinositol 3,4,5-trisphosphate (PIP3). Elevated PIP3 signalling causes a shift towards macropinocytosis and inhibits motility by redirecting the SCAR/WAVE complex, a major nucleator of actin filaments. High resolution microscopy shows that patches with high levels of PIP3 recruit SCAR/WAVE on their periphery, resulting in circular ruffle formation and engulfment. Results shed new light on the role of PIP3, which is commonly thought to promote cell motility.


Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 112
Author(s):  
Christopher T.D. Price ◽  
Yousef Abu Kwaik

The ubiquitin pathway is highly conserved across the eukaryotic domain of life and plays an essential role in a plethora of cellular processes. It is not surprising that many intracellular bacterial pathogens often target the essential host ubiquitin pathway. The intracellular bacterial pathogen Legionella pneumophila injects into the host cell cytosol multiple classes of classical and novel ubiquitin-modifying enzymes that modulate diverse ubiquitin-related processes in the host cell. Most of these pathogen-injected proteins, designated as effectors, mimic known E3-ubiquitin ligases through harboring F-box or U-box domains. The classical F-box effector, AnkB targets host proteins for K48-linked polyubiquitination, which leads to excessive proteasomal degradation that is required to generate adequate supplies of amino acids for metabolism of the pathogen. In contrast, the SidC and SdcA effectors share no structural similarity to known eukaryotic ligases despite having E3-ubiquitin ligase activity, suggesting that the number of E3-ligases in eukaryotes is under-represented. L. pneumophila also injects into the host many novel ubiquitin-modifying enzymes, which are the SidE family of effectors that catalyze phosphoribosyl-ubiquitination of serine residue of target proteins, independently of the canonical E1-2-3 enzymatic cascade. Interestingly, the environmental bacterium, L. pneumophila, has evolved within a diverse range of amoebal species, which serve as the natural hosts, while accidental transmission through contaminated aerosols can cause pneumonia in humans. Therefore, it is likely that the novel ubiquitin-modifying enzymes of L. pneumophila were acquired by the pathogen through interkingdom gene transfer from the diverse natural amoebal hosts. Furthermore, conservation of the ubiquitin pathway across eukaryotes has enabled these novel ubiquitin-modifying enzymes to function similarly in mammalian cells. Studies on the biological functions of these effectors are likely to reveal further novel ubiquitin biology and shed further lights on the evolution of ubiquitin.


2020 ◽  
Author(s):  
Julia Noack ◽  
David Jimenez-Morales ◽  
Erica Stevenson ◽  
Tom Moss ◽  
Gwendolyn Jang ◽  
...  

SUMMARYThe human pathogen Legionella pneumophila (L.p.) secretes ~330 bacterial effector proteins into the host cell which interfere with numerous cellular pathways and often regulate host cell proteins through post-translational modifications. However, the cellular targets and functions of most L.p. effectors are not known. In order to obtain a global overview of potential targets of these effectors, we analyzed the host cell proteome, ubiquitinome, and phosphoproteome during L.p. infection. Our analysis reveals dramatic spatiotemporal changes in the host cell proteome that are dependent on the secretion of bacterial effectors. Strikingly, we show that L.p. substantially reshapes the mitochondrial proteome and modulates mitochondrial stress response pathways such as the mitochondrial unfolded protein response (UPRmt). To our knowledge, this is the first evidence of manipulation of the UPRmt by a bacterial pathogen in mammalian cells. In addition, we have identified a previously uncharacterized L.p. effector that is targeted to host cell mitochondria and protects mitochondrial network integrity during mitochondrial stress.


Sign in / Sign up

Export Citation Format

Share Document