scholarly journals Dynamic proteomics profiling of Legionella pneumophila infection unveils modulation of the host mitochondrial stress response pathway

2020 ◽  
Author(s):  
Julia Noack ◽  
David Jimenez-Morales ◽  
Erica Stevenson ◽  
Tom Moss ◽  
Gwendolyn Jang ◽  
...  

SUMMARYThe human pathogen Legionella pneumophila (L.p.) secretes ~330 bacterial effector proteins into the host cell which interfere with numerous cellular pathways and often regulate host cell proteins through post-translational modifications. However, the cellular targets and functions of most L.p. effectors are not known. In order to obtain a global overview of potential targets of these effectors, we analyzed the host cell proteome, ubiquitinome, and phosphoproteome during L.p. infection. Our analysis reveals dramatic spatiotemporal changes in the host cell proteome that are dependent on the secretion of bacterial effectors. Strikingly, we show that L.p. substantially reshapes the mitochondrial proteome and modulates mitochondrial stress response pathways such as the mitochondrial unfolded protein response (UPRmt). To our knowledge, this is the first evidence of manipulation of the UPRmt by a bacterial pathogen in mammalian cells. In addition, we have identified a previously uncharacterized L.p. effector that is targeted to host cell mitochondria and protects mitochondrial network integrity during mitochondrial stress.

Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 112
Author(s):  
Christopher T.D. Price ◽  
Yousef Abu Kwaik

The ubiquitin pathway is highly conserved across the eukaryotic domain of life and plays an essential role in a plethora of cellular processes. It is not surprising that many intracellular bacterial pathogens often target the essential host ubiquitin pathway. The intracellular bacterial pathogen Legionella pneumophila injects into the host cell cytosol multiple classes of classical and novel ubiquitin-modifying enzymes that modulate diverse ubiquitin-related processes in the host cell. Most of these pathogen-injected proteins, designated as effectors, mimic known E3-ubiquitin ligases through harboring F-box or U-box domains. The classical F-box effector, AnkB targets host proteins for K48-linked polyubiquitination, which leads to excessive proteasomal degradation that is required to generate adequate supplies of amino acids for metabolism of the pathogen. In contrast, the SidC and SdcA effectors share no structural similarity to known eukaryotic ligases despite having E3-ubiquitin ligase activity, suggesting that the number of E3-ligases in eukaryotes is under-represented. L. pneumophila also injects into the host many novel ubiquitin-modifying enzymes, which are the SidE family of effectors that catalyze phosphoribosyl-ubiquitination of serine residue of target proteins, independently of the canonical E1-2-3 enzymatic cascade. Interestingly, the environmental bacterium, L. pneumophila, has evolved within a diverse range of amoebal species, which serve as the natural hosts, while accidental transmission through contaminated aerosols can cause pneumonia in humans. Therefore, it is likely that the novel ubiquitin-modifying enzymes of L. pneumophila were acquired by the pathogen through interkingdom gene transfer from the diverse natural amoebal hosts. Furthermore, conservation of the ubiquitin pathway across eukaryotes has enabled these novel ubiquitin-modifying enzymes to function similarly in mammalian cells. Studies on the biological functions of these effectors are likely to reveal further novel ubiquitin biology and shed further lights on the evolution of ubiquitin.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 108
Author(s):  
Ashley M. Joseph ◽  
Stephanie R. Shames

Many bacterial pathogens utilize translocated virulence factors called effectors to successfully infect their host. Within the host cell, effector proteins facilitate pathogen replication through subversion of host cell targets and processes. Legionella pneumophila is a Gram-negative intracellular bacterial pathogen that relies on hundreds of translocated effectors to replicate within host phagocytes. Within this large arsenal of translocated effectors is a unique subset of effectors called metaeffectors, which target and regulate other effectors. At least one dozen metaeffectors are encoded by L. pneumophila; however, mechanisms by which they promote virulence are largely unknown. This review details current knowledge of L pneumophila metaeffector function, challenges associated with their identification, and potential avenues to reveal the contribution of metaeffectors to bacterial pathogenesis.


2019 ◽  
Vol 88 (3) ◽  
Author(s):  
Bhavna Padmanabhan ◽  
Laura F. Fielden ◽  
Abderrahman Hachani ◽  
Patrice Newton ◽  
David R. Thomas ◽  
...  

ABSTRACT Coxiella burnetii is an obligate intracellular bacterial pathogen that replicates inside the lysosome-derived Coxiella-containing vacuole (CCV). To establish this unique niche, C. burnetii requires the Dot/Icm type IV secretion system (T4SS) to translocate a cohort of effector proteins into the host cell, which modulate multiple cellular processes. To characterize the host-pathogen interactions that occur during C. burnetii infection, stable-isotope labeling by amino acids in cell culture (SILAC)-based proteomics was used to identify changes in the host proteome during infection of a human-derived macrophage cell line. These data revealed that the abundances of many proteins involved in host cell autophagy and lysosome biogenesis were increased in infected cells. Thus, the role of the host transcription factors TFEB and TFE3, which regulate the expression of a network of genes involved in autophagy and lysosomal biogenesis, were examined in the context of C. burnetii infection. During infection with C. burnetii, both TFEB and TFE3 were activated, as demonstrated by the transport of these proteins from the cytoplasm into the nucleus. The nuclear translocation of these transcription factors was shown to be dependent on the T4SS, as a Dot/Icm mutant showed reduced nuclear translocation of TFEB and TFE3. This was supported by the observation that blocking bacterial translation with chloramphenicol resulted in the movement of TFEB and TFE3 back into the cytoplasm. Silencing of the TFEB and TFE3 genes, alone or in combination, significantly reduced the size of the CCV, which indicates that these host transcription factors facilitate the expansion and maintenance of the organelle that supports C. burnetii intracellular replication.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
A. Leoni Swart ◽  
Bernhard Steiner ◽  
Laura Gomez-Valero ◽  
Sabina Schütz ◽  
Mandy Hannemann ◽  
...  

ABSTRACT Legionella pneumophila governs its interactions with host cells by secreting >300 different “effector” proteins. Some of these effectors contain eukaryotic domains such as the RCC1 (regulator of chromosome condensation 1) repeats promoting the activation of the small GTPase Ran. In this report, we reveal a conserved pattern of L. pneumophila RCC1 repeat genes, which are distributed in two main clusters of strains. Accordingly, strain Philadelphia-1 contains two RCC1 genes implicated in bacterial virulence, legG1 (Legionella eukaryotic gene 1), and ppgA, while strain Paris contains only one, pieG. The RCC1 repeat effectors localize to different cellular compartments and bind distinct components of the Ran GTPase cycle, including Ran modulators and the small GTPase itself, and yet they all promote the activation of Ran. The pieG gene spans the corresponding open reading frames of legG1 and a separate adjacent upstream gene, lpg1975. legG1 and lpg1975 are fused upon addition of a single nucleotide to encode a protein that adopts the binding specificity of PieG. Thus, a point mutation in pieG splits the gene, altering the effector target. These results indicate that divergent evolution of RCC1 repeat effectors defines the Ran GTPase cycle targets and that modulation of different components of the cycle might fine-tune Ran activation during Legionella infection. IMPORTANCE Legionella pneumophila is a ubiquitous environmental bacterium which, upon inhalation, causes a life-threatening pneumonia termed Legionnaires’ disease. The opportunistic pathogen grows in amoebae and macrophages by employing a “type IV” secretion system, which secretes more than 300 different “effector” proteins into the host cell, where they subvert pivotal processes. The function of many of these effector proteins is unknown, and their evolution has not been studied. L. pneumophila RCC1 repeat effectors target the small GTPase Ran, a molecular switch implicated in different cellular processes such as nucleocytoplasmic transport and microtubule cytoskeleton dynamics. We provide evidence that one or more RCC1 repeat genes are distributed in two main clusters of L. pneumophila strains and have divergently evolved to target different components of the Ran GTPase activation cycle at different subcellular sites. Thus, L. pneumophila employs a sophisticated strategy to subvert host cell Ran GTPase during infection.


2015 ◽  
Vol 61 (9) ◽  
pp. 617-635 ◽  
Author(s):  
Ernest C. So ◽  
Corinna Mattheis ◽  
Edward W. Tate ◽  
Gad Frankel ◽  
Gunnar N. Schroeder

The Gram-negative facultative intracellular pathogen Legionella pneumophila infects a wide range of different protozoa in the environment and also human alveolar macrophages upon inhalation of contaminated aerosols. Inside its hosts, it creates a defined and unique compartment, termed the Legionella-containing vacuole (LCV), for survival and replication. To establish the LCV, L. pneumophila uses its Dot/Icm type IV secretion system (T4SS) to translocate more than 300 effector proteins into the host cell. Although it has become apparent in the past years that these effectors subvert a multitude of cellular processes and allow Legionella to take control of host cell vesicle trafficking, transcription, and translation, the exact function of the vast majority of effectors still remains unknown. This is partly due to high functional redundancy among the effectors, which renders conventional genetic approaches to elucidate their role ineffective. Here, we review the current knowledge about Legionella T4SS effectors, highlight open questions, and discuss new methods that promise to facilitate the characterization of T4SS effector functions in the future.


2008 ◽  
Vol 77 (1) ◽  
pp. 205-213 ◽  
Author(s):  
Daniel E. Voth ◽  
Robert A. Heinzen

ABSTRACT Coxiella burnetii is an obligate intracellular bacterial pathogen that directs biogenesis of a lysosome-like, parasitophorous vacuole in mammalian cells. We recently reported that C. burnetii inhibits apoptotic cell death in macrophages, presumably as a mechanism to sustain the host for completion of its lengthy infectious cycle. In the current study, we further investigated C. burnetii manipulation of host cell signaling and apoptosis by examining the effect of C. burnetii infection on activation of 15 host proteins involved in stress responses, cytokine production, and apoptosis. C. burnetii infection of THP-1 human macrophage-like cells caused increased levels of phosphorylated c-Jun, Hsp27, Jun N-terminal protein kinase, and p38 at 2 h postinfection (hpi), and this activation rapidly decreased to near basal levels by 24 hpi. The prosurvival kinases Akt and Erk1/2 (extracellular signal-regulated kinases 1 and 2) were also activated at 2 to 6 hpi; however, the phosphorylation of these proteins increased coincident with C. burnetii replication through at least 72 hpi. Sustained phosphorylation of Akt and Erk1/2 was abolished by treatment of infected cells with rifampin, indicating their activation is a C. burnetii-directed event requiring pathogen RNA synthesis. Moreover, pharmacological inhibition of Akt or Erk1/2 significantly decreased C. burnetii antiapoptotic activity. Collectively, these results indicate the importance of C. burnetii modulation of host signaling and demonstrate a critical role for Akt and Erk1/2 in successful intracellular parasitism and maintenance of host cell viability.


2005 ◽  
Vol 187 (22) ◽  
pp. 7716-7726 ◽  
Author(s):  
Karim Suwwan de Felipe ◽  
Sergey Pampou ◽  
Oliver S. Jovanovic ◽  
Christopher D. Pericone ◽  
Senna F. Ye ◽  
...  

ABSTRACT Intracellular pathogens exploit host cell functions to create a replication niche inside eukaryotic cells. The causative agent of Legionnaires' disease, the γ-proteobacterium Legionella pneumophila, resides and replicates within a modified vacuole of protozoan and mammalian cells. L. pneumophila translocates effector proteins into host cells through the Icm-Dot complex, a specialized type IVB secretion system that is required for intracellular growth. To find out if some effector proteins may have been acquired through interdomain horizontal gene transfer (HGT), we performed a bioinformatic screen that searched for eukaryotic motifs in all open reading frames of the L. pneumophila Philadelphia-1 genome. We found 44 uncharacterized genes with many distinct eukaryotic motifs. Most of these genes contain G+C biases compared to other L. pneumophila genes, supporting the theory that they were acquired through HGT. Furthermore, we found that several of them are expressed and up-regulated in stationary phase in an RpoS-dependent manner. In addition, at least seven of these gene products are translocated into host cells via the Icm-Dot complex, confirming their role in the intracellular environment. Reminiscent of the case with most Icm-Dot substrates, most of the strains containing mutations in these genes grew comparably to the parent strain intracellularly. Our findings suggest that in L. pneumophila, interdomain HGT may have been a major mechanism for the acquisition of determinants of infection.


mBio ◽  
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Stephen Weber ◽  
Maria Wagner ◽  
Hubert Hilbi

ABSTRACTThe causative agent of Legionnaires’ disease,Legionella pneumophila, replicates in amoebae and macrophages in a distinct membrane-bound compartment, theLegionella-containing vacuole (LCV). LCV formation is governed by the bacterial Icm/Dot type IV secretion system that translocates ~300 different “effector” proteins into host cells. Some of the translocated effectors anchor to the LCV membrane via phosphoinositide (PI) lipids. Here, we use the soil amoebaDictyostelium discoideum, producing fluorescent PI probes, to analyze the LCV PI dynamics by live-cell imaging. Upon uptake of wild-type or Icm/Dot-deficientL. pneumophila, PtdIns(3,4,5)P3transiently accumulated for an average of 40 s on early phagosomes, which acquired PtdIns(3)Pwithin 1 min after uptake. Whereas phagosomes containing ΔicmTmutant bacteria remained decorated with PtdIns(3)P, more than 80% of wild-type LCVs gradually lost this PI within 2 h. The process was accompanied by a major rearrangement of PtdIns(3)P-positive membranes condensing to the cell center. PtdIns(4)Ptransiently localized to early phagosomes harboring wild-type or ΔicmT L. pneumophilaand was cleared within minutes after uptake. During the following 2 h, PtdIns(4)Psteadily accumulated only on wild-type LCVs, which maintained a discrete PtdIns(4)Pidentity spatially separated from calnexin-positive endoplasmic reticulum (ER) for at least 8 h. The separation of PtdIns(4)P-positive and ER membranes was even more pronounced for LCVs harboring ΔsidC-sdcAmutant bacteria defective for ER recruitment, without affecting initial bacterial replication in the pathogen vacuole. These findings elucidate the temporal and spatial dynamics of PI lipids implicated in LCV formation and provide insight into host cell membrane and effector protein interactions.IMPORTANCEThe environmental bacteriumLegionella pneumophilais the causative agent of Legionnaires’ pneumonia. The bacteria form in free-living amoebae and mammalian immune cells a replication-permissive compartment, theLegionella-containing vacuole (LCV). To subvert host cell processes, the bacteria secrete the amazing number of ~300 different proteins into host cells. Some of these proteins bind phosphoinositide (PI) lipids to decorate the LCV. PI lipids are crucial factors involved in host cell membrane dynamics and LCV formation. UsingDictyosteliumamoebae producing one or two distinct fluorescent probes, we elucidated the dynamic LCV PI pattern in high temporal and spatial resolution. Notably, the endocytic PI lipid PtdIns(3)Pwas slowly cleared from LCVs, thus incapacitating the host cell’s digestive machinery, while PtdIns(4)Pgradually accumulated on the LCV, enabling critical interactions with host organelles. The LCV PI pattern underlies the spatiotemporal configuration of bacterial effector proteins and therefore represents a crucial aspect of LCV formation.


2021 ◽  
Vol 4 (12) ◽  
pp. e202101247
Author(s):  
Nnejiuwa U Ibe ◽  
Advait Subramanian ◽  
Shaeri Mukherjee

The intracellular bacterial pathogen Legionella pneumophila (L.p.) secretes ∼330 effector proteins into the host cell to sculpt an ER-derived replicative niche. We previously reported five L.p. effectors that inhibit IRE1, a key sensor of the homeostatic unfolded protein response (UPR) pathway. In this study, we discovered a subset of L.p. toxins that selectively activate the UPR sensor ATF6, resulting in its cleavage, nuclear translocation, and target gene transcription. In a deviation from the conventional model, this L.p.–dependent activation of ATF6 does not require its transport to the Golgi or its cleavage by the S1P/S2P proteases. We believe that our findings highlight the unique regulatory control that L.p. exerts upon the three UPR sensors and expand the repertoire of bacterial proteins that selectively perturb host homeostatic pathways.


2002 ◽  
Vol 70 (3) ◽  
pp. 1657-1663 ◽  
Author(s):  
Steven D. Zink ◽  
Lisa Pedersen ◽  
Nicholas P. Cianciotto ◽  
Yousef Abu Kwaik

ABSTRACT We have previously shown that Legionella pneumophila induces caspase 3-dependent apoptosis in mammalian cells during early stages of infection. In this report, we show that nine L. pneumophila strains with mutations in the dotA, dotDCB, icmT, icmGCD, and icmJB loci are completely defective in the induction of apoptosis, in addition to their severe defects in intracellular replication and pore formation-mediated cytotoxicity. Importantly, all nine dot/icm mutants were complemented for all their defective phenotypes with the respective wild-type loci. We show that the role of the Dot/Icm type IV secretion system in the induction of apoptosis is independent of the RtxA toxin, the dot/icm-regulated pore-forming toxin, and the type II secretion system. However, the pore-forming toxin, which is triggered upon entry into the postexponential growth phase, enhances the ability of L. pneumophila to induce apoptosis. Our data provide the first example of the role of a type IV secretion system of a bacterial pathogen in the induction of apoptosis in the host cell.


Sign in / Sign up

Export Citation Format

Share Document