scholarly journals Evolutionary innovations through gain and loss of genes in the ectomycorrhizal Boletales

2021 ◽  
Author(s):  
Gang Wu ◽  
Shingo Miyauchi ◽  
Emmanuelle Morin ◽  
Alan Kuo ◽  
Elodie Drula ◽  
...  

SUMMARYIn this study, we aim to identify genomic traits of the transitions to the ectomycorrhizal ecology within the Boletales, one of the most diverse lineages of symbiotrophic fungi.We sequenced the genomes and compared the gene repertoires of symbiotrophic Boletales species to their saprotrophic brown-rot relatives. We also reconstructed gene duplication/loss histories along a time-calibrated phylogeny.We showed that the rate of gene duplication is constant along the backbone of Boletales phylogeny with large loss events in lineages leading to several families. The rate of gene family expansion sharply increased in the late Miocene and mostly took place in Boletaceae.Most of the ectomycorrhizal Boletales are characterized by a large genome size due to transposable element (TE) expansions and a reduction in the diversity of plant cell wall degrading enzymes (PCWDEs) compared to their brown-rot relatives. However, several species in the Boletaceae, Paxillaceae and Boletinellaceae have kept a substantial set of endoglucanases and LPMOs acting on cellulose/hemicellulose and fungal polysaccharides suggesting that they may partly decompose organic matter by a combined activity of oxidative and hydrolytic enzymes.The present study provides novel insights on our understanding of the mechanisms that influence the evolutionary diversification of boletes and symbiosis evolution.

2021 ◽  
Vol 22 (17) ◽  
pp. 9359
Author(s):  
Vahideh Rafiei ◽  
Heriberto Vélëz ◽  
Georgios Tzelepis

Phytopathogenic fungi need to secrete different hydrolytic enzymes to break down complex polysaccharides in the plant cell wall in order to enter the host and develop the disease. Fungi produce various types of cell wall degrading enzymes (CWDEs) during infection. Most of the characterized CWDEs belong to glycoside hydrolases (GHs). These enzymes hydrolyze glycosidic bonds and have been identified in many fungal species sequenced to date. Many studies have shown that CWDEs belong to several GH families and play significant roles in the invasion and pathogenicity of fungi and oomycetes during infection on the plant host, but their mode of function in virulence is not yet fully understood. Moreover, some of the CWDEs that belong to different GH families act as pathogen-associated molecular patterns (PAMPs), which trigger plant immune responses. In this review, we summarize the most important GHs that have been described in eukaryotic phytopathogens and are involved in the establishment of a successful infection.


2020 ◽  
Author(s):  
Mathias Choquer ◽  
Christine Rascle ◽  
Isabelle R Gonçalves ◽  
Amélie de Vallée ◽  
Cécile Ribot ◽  
...  

SummaryGrey mold disease affects fruits, vegetables and ornamental plants around the world, causing considerable losses every year. Its causing agent, the necrotrophic fungus Botrytis cinerea, produces infection cushions (IC) that are compound appressorial structures dedicated to the penetration of the plant tissues.A microarray analysis was performed to identify genes up-regulated in mature IC. The expression data were supported by RT-qPCR analysis performed in vitro and in planta, proteomic analysis of the IC secretome and mutagenesis of two candidate genes.1,231 up-regulated genes and 79 up-accumulated proteins were identified. They highlight a secretion of ROS, secondary metabolites including phytotoxins, and proteins involved in virulence: proteases, plant cell wall degrading enzymes and necrosis inducers. The role in pathogenesis was confirmed for two up-regulated fasciclin genes. DHN-melanin pathway and chitin deacetylases genes are up-regulated and the conversion of chitin into chitosan was confirmed by differential staining of the IC cell wall. In addition, up-regulation of sugar transport and sugar catabolism encoding genes was found.These results support a role for the B. cinerea IC in plant penetration and suggest other unexpected roles for this fungal organ, in camouflage, necrotrophy or nutrition of the pathogen.


2021 ◽  
Vol 9 (1) ◽  
pp. 149
Author(s):  
Neha Sahu ◽  
Zsolt Merényi ◽  
Balázs Bálint ◽  
Brigitta Kiss ◽  
György Sipos ◽  
...  

Wood-decaying Basidiomycetes are among the most efficient degraders of plant cell walls, making them key players in forest ecosystems, global carbon cycle, and in bio-based industries. Recent insights from -omics data revealed a high functional diversity of wood-decay strategies, especially among the traditional white-rot and brown-rot dichotomy. We examined the mechanistic bases of wood-decay in the conifer-specialists Armillaria ostoyae and Armillaria cepistipes using transcriptomic and proteomic approaches. Armillaria spp. (Fungi, Basidiomycota) include devastating pathogens of temperate forests and saprotrophs that decay wood. They have been discussed as white-rot species, though their response to wood deviates from typical white-rotters. While we observed an upregulation of a diverse suite of plant cell wall degrading enzymes, unlike white-rotters, they possess and express an atypical wood-decay repertoire in which pectinases and expansins are enriched, whereas lignin-decaying enzymes (LDEs) are generally downregulated. This combination of wood decay genes resembles the soft-rot of Ascomycota and appears widespread among Basidiomycota that produce a superficial white rot-like decay. These observations are consistent with ancestral soft-rot decay machinery conserved across asco- and Basidiomycota, a gain of efficient lignin-degrading ability in white-rot fungi and repeated, complete, or partial losses of LDE encoding gene repertoires in brown- and secondarily soft-rot fungi.


Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1042
Author(s):  
Cheepudom ◽  
Lin ◽  
Lee ◽  
Meng

Thermobifida fusca is of biotechnological interest due to its ability to produce an array of plant cell wall hydrolytic enzymes. Nonetheless, only one T. fusca bacteriophage with genome information has been reported to date. This study was aimed at discovering more relevant bacteriophages to expand the existing knowledge of phage diversity for this host species. With this end in view, a thermostable T. fusca bacteriophage P318, which belongs to the Siphoviridae family, was isolated and characterized. P318 has a double-stranded DNA genome of 48,045 base pairs with 3′-extended COS ends, on which 52 putative ORFs are organized into clusters responsible for the order of genome replication, virion morphogenesis, and the regulation of the lytic/lysogenic cycle. In comparison with T. fusca and the previously discovered bacteriophage P1312, P318 has a much lower G+C content in its genome except at the region encompassing ORF42, which produced a protein with unknown function. P1312 and P318 share very few similarities in their genomes except for the regions encompassing ORF42 of P318 and ORF51 of P1312 that are homologous. Thus, acquisition of ORF42 by lateral gene transfer might be an important step in the evolution of P318.


2017 ◽  
Vol 30 (11) ◽  
pp. 886-895 ◽  
Author(s):  
Maria Chiara Paccanaro ◽  
Luca Sella ◽  
Carla Castiglioni ◽  
Francesca Giacomello ◽  
Ana Lilia Martínez-Rocha ◽  
...  

Endo-polygalacturonases (PGs) and xylanases have been shown to play an important role during pathogenesis of some fungal pathogens of dicot plants, while their role in monocot pathogens is less defined. Pg1 and xyr1 genes of the wheat pathogen Fusarium graminearum encode the main PG and the major regulator of xylanase production, respectively. Single- and double-disrupted mutants for these genes were obtained to assess their contribution to fungal infection. Compared with wild-type strain, the ∆pg mutant showed a nearly abolished PG activity, slight reduced virulence on soybean seedlings, but no significant difference in disease symptoms on wheat spikes; the ∆xyr mutant was strongly reduced in xylanase activity and moderately reduced in cellulase activity but was as virulent as wild type on both soybean and wheat plants. Consequently, the ΔpgΔxyr double mutant was impaired in xylanase, PG, and cellulase activities but, differently from single mutants, was significantly reduced in virulence on both plants. These findings demonstrate that the concurrent presence of PG, xylanase, and cellulase activities is necessary for full virulence. The observation that the uronides released from wheat cell wall after a F. graminearum PG treatment were largely increased by the fungal xylanases suggests that these enzymes act synergistically in deconstructing the plant cell wall.


2020 ◽  
Author(s):  
Pallavi Kumari ◽  
Tali Sayas ◽  
Patricia Bucki ◽  
Sigal Brown Miyara ◽  
Maya Kleiman

AbstractStudying the interactions between microorganisms and plant roots is crucial for understanding a variety of phenomena concerning crop yield and health. The role of root surface properties in these interactions, is rarely addressed. To this end, we previously built a synthetic system, from the inert polymer polydimethyl siloxane (PDMS), mimicking the root surface microstructure, using a replication technique. This replica enables the study of isolated effects of surface structure on microorganism-plant interactions. Since the root surface is composed mostly of cellulose, using cellulose-like materials as our replica, instead of PDMS, is the next logical step. This will enable following the hydrolysis of such surfaces as a result of microorganisms secreting Plant Cell Wall Degrading Enzymes (PCWDE), and in particular, cellulase. Visualization of such hydrolysis in a synthetic system can assist in studying the localization and activity of microorganisms and how they correlate with surface microtopography, separately from chemical plant signals.In this work, we modified the known carboxymethyl cellulase (CMC) hydrolysis visualization method to enable real-time tracking of cellulase activity of microorganisms on the surface. Surface was formed from pure CMC, rather than CMC incorporated in agar as is often done, and by that, eliminating diffusion issues. Acridine orange dye, which is compatible, at low concentrations, with microorganisms, as opposed to other routinely used dyes, was incorporated into the film. The dye disassociated from the film when hydrolysis occurred, forming a halo surrounding the point of hydrolysis. This enabled real-time visualization since the common need for post hydrolysis dyeing was negated. Using Root Knot Nematode (RKN) as a model organism that penetrates the plant root, we showed it was possible to follow microorganism cellulase secretion on the surface in the form of CMC film hydrolysis. Furthermore, the addition of natural additives, in the form of root extract was also shown to be an option and resulted in an increased RKN response. We tested our newly developed method by changing temperature and pH conditions and by characterization of the hydrolyzed surface using both Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM).This method will be implemented in the future on a root surface microstructure replica. We believe the combination of this new method with our previously developed root surface microstructure replication technique can open a new avenue of research in the field of plant root-microorganism interactions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maria Guadalupe Villa-Rivera ◽  
Horacio Cano-Camacho ◽  
Everardo López-Romero ◽  
María Guadalupe Zavala-Páramo

Arabinogalactans (AGs) are structural polysaccharides of the plant cell wall. A small proportion of the AGs are associated with hemicellulose and pectin. Furthermore, AGs are associated with proteins forming the so-called arabinogalactan proteins (AGPs), which can be found in the plant cell wall or attached through a glycosylphosphatidylinositol (GPI) anchor to the plasma membrane. AGPs are a family of highly glycosylated proteins grouped with cell wall proteins rich in hydroxyproline. These glycoproteins have important and diverse functions in plants, such as growth, cellular differentiation, signaling, and microbe-plant interactions, and several reports suggest that carbohydrate components are crucial for AGP functions. In beneficial plant-microbe interactions, AGPs attract symbiotic species of fungi or bacteria, promote the development of infectious structures and the colonization of root tips, and furthermore, these interactions can activate plant defense mechanisms. On the other hand, plants secrete and accumulate AGPs at infection sites, creating cross-links with pectin. As part of the plant cell wall degradation machinery, beneficial and pathogenic fungi and bacteria can produce the enzymes necessary for the complete depolymerization of AGs including endo-β-(1,3), β-(1,4) and β-(1,6)-galactanases, β-(1,3/1,6) galactanases, α-L-arabinofuranosidases, β-L-arabinopyranosidases, and β-D-glucuronidases. These hydrolytic enzymes are secreted during plant-pathogen interactions and could have implications for the function of AGPs. It has been proposed that AGPs could prevent infection by pathogenic microorganisms because their degradation products generated by hydrolytic enzymes of pathogens function as damage-associated molecular patterns (DAMPs) eliciting the plant defense response. In this review, we describe the structure and function of AGs and AGPs as components of the plant cell wall. Additionally, we describe the set of enzymes secreted by microorganisms to degrade AGs from AGPs and its possible implication for plant-microbe interactions.


2018 ◽  
Vol 108 (10) ◽  
pp. 1206-1211 ◽  
Author(s):  
Takeo Shimizu ◽  
Satoko Kanematsu ◽  
Hajime Yaegashi

Understanding the molecular mechanisms of pathogenesis is useful in developing effective control methods for fungal diseases. The white root rot fungus Rosellinia necatrix is a soilborne pathogen that causes serious economic losses in various crops, including fruit trees, worldwide. Here, using next-generation sequencing techniques, we first produced a 44-Mb draft genome sequence of R. necatrix strain W97, an isolate from Japan, in which 12,444 protein-coding genes were predicted. To survey differentially expressed genes (DEGs) associated with the pathogenesis of the fungus, the hypovirulent W97 strain infected with Rosellinia necatrix megabirnavirus 1 (RnMBV1) was used for a comprehensive transcriptome analysis. In total, 545 and 615 genes are up- and down-regulated, respectively, in R. necatrix infected with RnMBV1. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the DEGs suggested that primary and secondary metabolism would be greatly disturbed in R. necatrix infected with RnMBV1. The genes encoding transcriptional regulators, plant cell wall-degrading enzymes, and toxin production, such as cytochalasin E, were also found in the DEGs. The genetic resources provided in this study will accelerate the discovery of genes associated with pathogenesis and other biological characteristics of R. necatrix, thus contributing to disease control.


Sign in / Sign up

Export Citation Format

Share Document