scholarly journals Probing neuropeptide volume transmission in vivo by a novel all-optical approach

2021 ◽  
Author(s):  
Hejian Xiong ◽  
Emre Lacin ◽  
Hui Ouyang ◽  
Aditi Naik ◽  
Xueqi Xu ◽  
...  

AbstractNeuropeptides are essential signaling molecules in the nervous system involved in modulating neural circuits and behavior. Although hypothesized to signal via volume transmission through G-protein coupled receptors (GPCR), remarkably little is known about their extrasynaptic diffusion. Here, we developed an all-optical approach to probe neuropeptide volume transmission in mouse neocortex. To control neuropeptide release, we engineered photosensitive nanovesicles with somatostatin-14 (SST) that is released with near-infrared light stimulation. To detect SST, we created a new cell-based neurotransmitter fluorescent engineered reporter (CNiFER) using the SST2 GPCR. Under two-photon imaging, we determined the time to activate SST2R at defined distances as well as the maximal distance and loss rate for SST volume transmission in neocortex. Importantly, we determined that SST transmission is significantly faster in neocortex with a chemically degraded extracellular matrix, a diseased condition indicated in neuroinflammation and Parkinson’s disease. These new neurotechnologies can reveal important biological signaling processes previously not possible, and provide new opportunities to investigate volume transmission in the brain.

2020 ◽  
Vol 6 (44) ◽  
pp. eabb6165
Author(s):  
Lukas Pfeifer ◽  
Nong V. Hoang ◽  
Maximilian Scherübl ◽  
Maxim S. Pshenichnikov ◽  
Ben L. Feringa

Light-controlled artificial molecular machines hold tremendous potential to revolutionize molecular sciences as autonomous motion allows the design of smart materials and systems whose properties can respond, adapt, and be modified on command. One long-standing challenge toward future applicability has been the need to develop methods using low-energy, low-intensity, near-infrared light to power these nanomachines. Here, we describe a rotary molecular motor sensitized by a two-photon absorber, which efficiently operates under near-infrared light at intensities and wavelengths compatible with in vivo studies. Time-resolved spectroscopy was used to gain insight into the mechanism of energy transfer to the motor following initial two-photon excitation. Our results offer prospects toward in vitro and in vivo applications of artificial molecular motors.


2018 ◽  
Author(s):  
Elke Schmidt ◽  
Martin Oheim

ABSTRACTUnraveling how neural networks process and represent sensory information and how this cellular dynamics instructs behavioral output is a main goal in current neuroscience. Two-photon activation of optogenetic actuators and fluorescence calcium (Ca2+) imaging with genetically encoded Ca2+ indicators allow, respectively, the all-optical stimulation and readout of activity from genetically identified cell populations. However, these techniques expose the brain to high near-infrared light doses raising the concern of light-induced adverse effects on the biological phenomena being studied. Combing Ca2+ imaging of GCaMP6f-expressing cortical astrocytes as a sensitive readout for photodamage and an unbiased machine-based event detection, we demonstrate the subtle build-up of aberrant microdomain Ca2+ signals in fine astroglial processes. Illumination conditions routinely being used in biological two-photon microscopy (920-nm excitation, 100-fs regime, ten mW average power) increased the frequency of microdomain Ca2+ events, but left their amplitude, area and duration rather unchanged. This increase in local Ca2+ activity was followed by Ca2+ transients in the otherwise silent soma. Ca2+ hyperactivity occurred without overt morphological damage. Surprisingly, at the same average power, continuous-wave 920-nm illumination was as damaging as fs pulses, indicating a linear, heating-mediated (rather than a highly non-linear) damage mechanism. In an astrocyte-specific IP3-receptor knock-out mouse (IP3R2-KO), Near-infrared light-induced Ca2+ microdomains signals persisted in the small processes, underpinning their resemblance to physiological IP3R2-independent Ca2+ signals, while somatic activity was abolished. Contrary to what has generally been believed in the field, shorter pulses and lower average power are advantageous to alleviate photodamage and allow for longer useful recording windows.SIGNIFICANCE STATEMENTImaging the fine structure and function of the brain has become possible with two-photon microscopy that uses ultrashort-pulsed infrared laser light for better tissue penetration. The high peak energy of these light pulses has raised concerns about photodamage resulting from multi-photon processes. Here, we show that the time-averaged rather than the peak laser power matters. At wavelengths and with laser powers now commonly used in neuroscience brain damage occurs as a consequence of direct infrared light absorption, i.e., heating. To counteract brain heating we explore a strategy that uses even shorter, more energetic pulses but a lower time-averaged laser power to produce the same image quality while making two-photon microscopy less invasive.


2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongchao Wang ◽  
Ningqiang Gong ◽  
Chi Ma ◽  
Yuxuan Zhang ◽  
Hong Tan ◽  
...  

AbstractImmunological adjuvants are essential for successful cancer vaccination. However, traditional adjuvants have some limitations, such as lack of controllability and induction of systemic toxicity, which restrict their broad application. Here, we present a light-activable immunological adjuvant (LIA), which is composed of a hypoxia-responsive amphiphilic dendrimer nanoparticle loaded with chlorin e6. Under irradiation with near-infrared light, the LIA not only induces tumour cell lysis and tumour antigen release, but also promotes the structural transformation of 2-nitroimidazole containing dendrimer to 2-aminoimidazole containing dendrimer which can activate dendritic cells via the Toll-like receptor 7-mediated signaling pathway. The LIA efficiently inhibits both primary and abscopal tumour growth and induces strong antigen-specific immune memory effect to prevent tumour metastasis and recurrence in vivo. Furthermore, LIA localizes the immunological adjuvant effect at the tumour site. We demonstrate this light-activable immunological adjuvant offers a safe and potent platform for in situ cancer vaccination.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Songtao Zhang ◽  
Longhai Jin ◽  
Jianhua Liu ◽  
Yang Liu ◽  
Tianqi Zhang ◽  
...  

AbstractIn spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction (i.e., chemodynamic therapy, CDT) has been attracted more attentions in recent years, the limited Fenton reaction efficiency is the important obstacle to further application in clinic. Herein, we synthesized novel FeO/MoS2 nanocomposites modified by bovine serum albumin (FeO/MoS2-BSA) with boosted Fenton reaction efficiency by the synergistic effect of co-catalyze and photothermal effect of MoS2 nanosheets triggered by the second near-infrared (NIR II) light. In the tumor microenvironments, the MoS2 nanosheets not only can accelerate the conversion of Fe3+ ions to Fe2+ ions by Mo4+ ions on their surface to improve Fenton reaction efficiency, but also endow FeO/MoS2-BSA with good photothermal performances for photothermal-enhanced CDT and photothermal therapy (PTT). Consequently, benefiting from the synergetic-enhanced CDT/PTT, the tumors are eradicated completely in vivo. This work provides innovative synergistic strategy for constructing nanocomposites for highly efficient CDT.


Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Joseph M Wider ◽  
Erin Gruley ◽  
Jennifer Mathieu ◽  
Emma Murphy ◽  
Rachel Mount ◽  
...  

Background: Mitochondrial dysfunction contributes to cardiac arrest induced brain injury and has been a target for neuroprotective therapies. An emerging concept suggests that hyperactivation of neuronal mitochondria following resuscitation results in hyperpolarization of the mitochondrial membrane during reperfusion, which drives generation of excess reactive oxygen species. Previous studies from our group demonstrated that limiting mitochondrial hyperactivity by non-invasively modulating mitochondrial function with specific near infrared light (NIR) wavelengths can reduce brain injury in small animal models of global and focal ischemia. Hypothesis: Inhibitory wavelengths of NIR will reduce neuronal injury and improve neurocognitive outcome in a clinically relevant swine model of cardiac arrest. Methods: Twenty-eight male and female adult swine were enrolled (3 groups: Sham, CA/CPR, and CA/CPR + NIR). Cardiac arrest (8 minutes) was induced with a ventricular pacing wire and followed by manual CPR with defibrillation and epinephrine every 30 seconds until return of spontaneous circulation (ROSC), 2 of the 20 swine that underwent CA did not achieve ROSC and were not enrolled. Treatment groups were randomized prior to arrest and blinded to the CPR team. Treatment was applied at onset of ROSC by irradiating the scalp with 750 nm and 950 nm LEDs (5W) for 2 hours. Results: Sham-operated animals all survived (8/8), whereas 22% of untreated animals subjected to cardiac arrest died within 45 min of ROSC (CA/CPR, n= 7/9). All swine treated with NIR survived the duration of the study (CA/CPR + NIR, n=9/9). Four days following cardiac arrest, neurological deficit score was improved in the NIR treatment group (50 ± 21 CA/CPR vs. 0.8 ± 0.8 CA/CPR + NIR, p < 0.05). Additionally, neuronal death in the CA1/CA3 regions of the hippocampus, assessed by counting surviving neurons with stereology, was attenuated by treatment with NIR (17917 ± 5534 neurons/mm 3 CA/CPR vs. 44655 ± 5637 neurons/mm 3 CA/CPR + NIR, p < 0.05). All data is reported as mean ± SEM. Conclusions: These data provide evidence that noninvasive modulation of mitochondria, achieved by transcranial irradiation of the brain with NIR, mitigates post-cardiac arrest brain injury.


Small ◽  
2008 ◽  
Vol 4 (7) ◽  
pp. 1001-1007 ◽  
Author(s):  
Takuro Niidome ◽  
Yasuyuki Akiyama ◽  
Kohei Shimoda ◽  
Takahito Kawano ◽  
Takeshi Mori ◽  
...  

2018 ◽  
Vol 20 (suppl_3) ◽  
pp. iii273-iii273
Author(s):  
M Piechutta ◽  
A S Berghoff ◽  
M A Karreman ◽  
K Gunkel ◽  
W Wick ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document