scholarly journals The secrets to domestic bliss – Partner fidelity and environmental filtering preserve stage-specific turtle ant gut symbioses for over 40 million years

2021 ◽  
Author(s):  
Yi Hu ◽  
Catherine L. D’Amelio ◽  
Benoît Béchade ◽  
Christian S. Cabuslay ◽  
Jon G. Sanders ◽  
...  

AbstractBackgroundGut microbiomes can vary across development, a pattern often found for insects with complete metamorphosis. With varying nutritional need and distinct opportunities for microbial acquisition, questions arise as to how such ‘holometabolous’ insects retain helpful microbes at larval and adult stages. Ants are an intriguing system for such study. In a number of lineages adults digest only liquid food sources, while larvae digest solid foods. Like some other social insects, workers and soldiers of some ant species engage in oral-anal trophallaxes, enabling microbial transfer among siblings. But do queens, the typical colony founding caste, obtain symbionts through such transfer? Does this enable transgenerational symbiont passage? And does the resulting partner fidelity promote the evolution of beneficial symbionts? Furthermore, how might such adult-centric biology shape larval microbiomes? To address these questions, we characterized symbiotic gut bacteria across 13 species of Cephalotes turtle ants, with up to 40-million years of divergence. Adding to the prior focus on workers we, here, study underexplored castes and stages including queens, soldiers, and larvae, by performing 16S rRNA qPCR, amplicon sequencing, and phylogenetic classification.ResultsWe show that adult microbiomes are conserved across species and largely across castes. Nearly 95% of the bacteria in adults have, thus far, been found only in Cephalotes ants. Furthermore, the microbiomes from most adults exhibit phylosymbiosis, a trend in which microbiome community similarity recapitulates patterns of host relatedness. Additionally, an abundant, adult-enriched symbiont cospeciates with some Cephalotes. Evidence here suggests that these partner fidelity patterns extend from transgenerational symbiont transfer through alate gyne dispersal and subsequent colony-founding by queens. Like adults, larvae of Cephalotes species exhibit strong microbiome conservation. Phylosymbiosis patterns are weaker, however, with further evidence elevating environmental filtering as a primary mechanism behind such conservation. Specifically, while adult-enriched symbionts are found in most larvae, symbionts of older larvae are highly related to free-living bacteria from the Enterobacteriaceae, Lactobacillales, and Actinobacteria.ConclusionsOur findings suggest that both partner fidelity and conserved environmental filtering drive stable, stage-specific, social insect symbioses. We discuss the implications for our broader understanding of insect microbiomes, and the means of sustaining a beneficial microbiome.

2021 ◽  
pp. 185-215
Author(s):  
Nabil Majdi ◽  
Tom Moens ◽  
Walter Traunspurger

Abstract This chapter provides overview of the feeding habits and food sources of aquatic nematodes. The environmental constraints on feeding, food recognition, and feeding selectivity are also addressed, together with the complex, indirect trophic interactions between nematodes and their microbial prey. To raise awareness of the inherent methodological and/or interpretational problems in studies of nematode feeding ecology, the chapter ends with a brief look at the methods that have been adapted to quantify feeding rates in nematodes.


BioScience ◽  
2019 ◽  
Vol 69 (11) ◽  
pp. 867-876 ◽  
Author(s):  
Michaela Schratzberger ◽  
Martijn Holterman ◽  
Dick van Oevelen ◽  
Johannes Helder

Abstract Free-living nematodes, an ancient animal phylum of unsegmented microscopic roundworms, have successfully adapted to nearly every ecosystem on Earth: from marine and freshwater to land, from the polar regions to the tropics, and from the mountains to the ocean depths. They are globally the most abundant animals in sediments and soils. In the present article, we identify the factors that collectively explain the successful ecological proliferation of free-living nematodes and demonstrate the impact they have on vital sediment and soil processes. The ecological success of nematodes is strongly linked to their ability to feed on various food sources that are present in both sediments and soils, and to proliferate rapidly and survive in contrasting environmental conditions. The adaptations, roles, and behaviors of free-living nematodes have important implications for the resilience of sediments and soils, and for emergent animal communities responding to human alterations to ecosystems worldwide.


2020 ◽  
Vol 96 (5) ◽  
Author(s):  
Xiaoliang Jiang ◽  
Wenzhi Liu ◽  
Lunguang Yao ◽  
Guihua Liu ◽  
Yuyi Yang

ABSTRACT The relative importance of local environments and dispersal limitation in shaping denitrifier community structure remains elusive. Here, we collected soils from 36 riverine, lacustrine and palustrine wetland sites on the remote Tibetan Plateau and characterized the soil denitrifier communities using high-throughput amplicon sequencing of the nirS and nirK genes. Results showed that the richness of nirS-type denitrifiers in riverine wetlands was significantly higher than that in lacustrine wetlands but not significantly different from that in palustrine wetlands. There was no clear distinction in nir community composition among the three kinds of wetlands. Irrespective of wetland type, the soil denitrification rate was positively related to the abundance, but not the α-diversity, of denitrifying communities. Soil moisture, carbon availability and soil temperature were the main determinants of diversity [operational taxonomic unit (OTU) number] and abundance of thenirS-type denitrifier community, while water total organic carbon, soil NO3– and soil moisture were important in controlling nirK-type denitrifier diversity and abundance. The nirS community composition was influenced by water electrical conductivity, soil temperature and water depth, while the nirK community composition was affected by soil electrical conductivity. Spatial distance explained more variation in the nirS community composition than in the nirK community composition. Our findings highlight the importance of both environmental filtering and spatial distance in explaining diversity and biogeography of soil nir communities in remote and relatively undisturbed wetlands.


2019 ◽  
Vol 7 (12) ◽  
pp. 598 ◽  
Author(s):  
Anyi Hu ◽  
Hongjie Wang ◽  
Meixian Cao ◽  
Azhar Rashid ◽  
Mingfeng Li ◽  
...  

Coastal sands harbor diverse microbial assemblages that play a critical role in the biogeochemical cycling of beach ecosystems. However, little is known about the relative importance of the different ecological processes underlying the assembly of communities of sand microbiota. Here, we employed 16S rDNA amplicon sequencing to investigate the sand microbiota of two coastal beaches, in southern China. The results showed that sand microbial assemblages at intertidal and supratidal zones exhibited contrasting compositions that can be attributed to environmental filtering by electric conductivity. A consistent pattern of habitat generalists and specialists of sand microbiota was observed among different beach zones. Null and neutral model analyses indicated that the environmental filtering was mainly responsible for supratidal microbial communities, while the neutral processes could partially influence the assembly of intertidal communities. Moreover, environmental filtering was found to shape the habitat specialists, while random dispersal played a major role in shaping generalists. The neutral model analysis revealed that the habitat generalists exceeding the neutral prediction harbored a relatively higher proportion of microbial taxa than the specialist counterparts. An opposite pattern was observed for taxa falling below the neutral prediction. Collectively, these findings offer a novel insight into the assembly mechanisms of coastal sand microbiota.


2021 ◽  
Vol 3 ◽  
Author(s):  
Baiba Vilne ◽  
Lelde Grantiņa-Ieviņa ◽  
Juris Ķibilds ◽  
Artjoms Mališevs ◽  
Genadijs Konvisers ◽  
...  

Background: Biofilms, when formed on the surfaces of water pipes, can be responsible for a wide range of water quality and operational problems. We sought to assess the bacterial and free-living protozoa (FLP) diversity, in relation to the presence of Legionnaire's disease-causing bacteria Legionella pneumophila (L. pneumophila) in 45 biofilms of hot water distribution system pipes of apartment buildings in Riga, the capital city of Latvia.Results: 16S rRNA amplicon sequencing (metataxonomics) revealed that each biofilm contained 224 rather evenly distributed bacterial genera and that most common and most abundant were two genera, completely opposites in terms of their oxygen requirements: the obligately anaerobic Thermodesulfovibrio and the strictly aerobic Phenylobacterium. Water temperature and north-south axis (i.e., different primary water sources) displayed the most significant effect on the inter-sample variations, allowing us to re-construct three sub-networks (modules) of co-occurring genera, one involving (potentially FLP-derived) Legionella spp. Pangenome-based functional profile predictions suggested that all three may be dominated by pathways related to the development and maintenance of biofilms, including quorum sensing and nutrient transport, as well as the utilization of various energy sources, such as carbon and nitrogen. In our 18S rRNA amplicon sequencing data, potential hosts of L. pneumophila were detected in 11 out of 12 biofilm samples analyzed, however, in many cases, their relative abundance was very low (<1%). By validating our findings using culture-based methods, we detected L. pneumophila (serogroups 2, 3, 6 and 9) in nine (20%) biofilms, whereas FLP (mostly Acanthamoeba, Vahlkampfidae and Vermamoeba spp.) were present in six (~13%) biofilms. In two biofilms, L. pneumophila and its potential hosts were detected simultaneously, using culture-based methods.Conclusions: Overall, our study sheds light on the community diversity of hot water biofilms and predicts how several environmental factors, such as water temperature and source might shape it.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anna Christine Trego ◽  
Paul G. McAteer ◽  
Corine Nzeteu ◽  
Therese Mahony ◽  
Florence Abram ◽  
...  

Advances in null-model approaches have resulted in a deeper understanding of community assembly mechanisms for a variety of complex microbiomes. One under-explored application is assembly of communities from the built-environment, especially during process disturbances. Anaerobic digestion for biological wastewater treatment is often underpinned by retaining millions of active granular biofilm aggregates. Flotation of granules is a major problem, resulting in process failure. Anaerobic aggregates were sampled from three identical bioreactors treating dairy wastewater. Microbiome structure was analysed using qPCR and 16S rRNA gene amplicon sequencing from DNA and cDNA. A comprehensive null-model approach quantified assembly mechanisms of floating and settled communities. Significant differences in diversity were observed between floating and settled granules, in particular, we highlight the changing abundances of Methanosaeta and Lactococcus. Both stochastic and deterministic processes were important for community assembly. Homogeneous selection was the primary mechanism for all categories, but dispersal processes also contributed. The lottery model was used to identify clade-level competition driving community assembly. Lottery “winners” were identified with different winners between floating and settled groups. Some groups changed their winner status when flotation occurred. Spirochaetaceae, for example, was only a winner in settled biomass (cDNA-level) and lost its winner status during flotation. Alternatively, Arcobacter butzerli gained winner status during flotation. This analysis provides a deeper understanding of changes that occur during process instabilities and identified groups which may be washed out—an important consideration for process control.


2020 ◽  
Author(s):  
Katelyn Mika ◽  
Alexander S. Okamoto ◽  
Neil H. Shubin ◽  
David B. Mark Welch

AbstractMicrobial transmission from parent to offspring is hypothesized to be universal in vertebrates. However, evidence for this is limited as many clades remain unexamined. Chondrichthyes, as one of the earliest–branching vertebrate lineages, provide an opportunity to investigate the phylogenetic breadth of this hypothesis. To assess the potential for bacterial transmission in an oviparous chondrichthyan, we used 16S rRNA amplicon sequencing to characterize the microbial communities associated with the skin, gill, and egg capsule of the little skate, Leucoraja erinacea, at six points during ontogeny. We identify site-specific microbiomes dominated by the bacterial phyla Proteobacteria and Bacteroidetes, a composition similar to, but distinct from, that of other chondrichthyans. Our data reveal that the skate egg capsule harbors a highly diverse bacterial community–particularly on the internal surface of the capsule–and facilitates intergenerational microbial transfer to the offspring. Embryonic skin and external gill tissues host similar bacterial communities; the skin and gill communities later diverge as the internal gills and skin denticles develop. Our study is the first exploration of the chondrichthyan microbiome throughout ontogeny and provides the first evidence of vertical transmission in this group, which may be the primary mechanism for the signature of phylosymbiosis previously observed in elasmobranchs.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ivan N. Chavez ◽  
Taylor M. Brown ◽  
Adrien Assié ◽  
Astra S. Bryant ◽  
Buck S. Samuel ◽  
...  

Abstract Background Skin-penetrating nematodes of the genus Strongyloides infect over 600 million people, posing a major global health burden. Their life cycle includes both a parasitic and free-living generation. During the parasitic generation, infective third-stage larvae (iL3s) actively engage in host seeking. During the free-living generation, the nematodes develop and reproduce on host feces. At different points during their life cycle, Strongyloides species encounter a wide variety of host-associated and environmental bacteria. However, the microbiome associated with Strongyloides species, and the behavioral and physiological interactions between Strongyloides species and bacteria, remain unclear. Results We first investigated the microbiome of the human parasite Strongyloides stercoralis using 16S-based amplicon sequencing. We found that S. stercoralis free-living adults have an associated microbiome consisting of specific fecal bacteria. We then investigated the behavioral responses of S. stercoralis and the closely related rat parasite Strongyloides ratti to an ecologically diverse panel of bacteria. We found that S. stercoralis and S. ratti showed similar responses to bacteria. The responses of both nematodes to bacteria varied dramatically across life stages: free-living adults were strongly attracted to most of the bacteria tested, while iL3s were attracted specifically to a narrow range of environmental bacteria. The behavioral responses to bacteria were dynamic, consisting of distinct short- and long-term behaviors. Finally, a comparison of the growth and reproduction of S. stercoralis free-living adults on different bacteria revealed that the bacterium Proteus mirabilis inhibits S. stercoralis egg hatching, and thereby greatly decreases parasite viability. Conclusions Skin-penetrating nematodes encounter bacteria from various ecological niches throughout their life cycle. Our results demonstrate that bacteria function as key chemosensory cues for directing parasite movement in a life-stage-specific manner. Some bacterial genera may form essential associations with the nematodes, while others are detrimental and serve as a potential source of novel nematicides.


2019 ◽  
Author(s):  
Laura Gomez-Consarnau ◽  
David M. Needham ◽  
Peter K. Weber ◽  
Jed A. Fuhrman ◽  
Xavier Mayali

While the impact of light on primary productivity in aquatic systems has been studied for decades, the role light plays in the degradation of photosynthetically-produced biomass is less well understood. We investigated the patterns of light-induced particle breakdown and bacterial assimilation of detrital C and N using13C and15N labeled freeze-thawed diatom cells incubated in laboratory microcosms with a marine microbial community freshly-collected from the Pacific Ocean. Particles incubated in the dark resulted in increased bacterial counts and dissolved organic carbon concentrations compared to those incubated in the light. Light also influenced the attached and free-living microbial community structure as detected by 16S rRNA gene amplicon sequencing. For example, bacterial taxa from the Sphingobacteriia were enriched on dark-incubated particles and taxa from the family Flavobacteriaceae and the genus Pseudoalteromonas were numerically enriched on particles in the light. Isotope incorporation analysis by phylogenetic microarray and NanoSIMS (a method called Chip-SIP) identified free-living and attached microbial taxa able to incorporate N and C from the particles. Some taxa, including members of the Flavobacteriaceae and Cryomorphaceae, exhibited increased isotope incorporation in the light, suggesting the use of photoheterotrophic metabolisms. In contrast, some members of Oceanospirillales and Rhodospirillales showed decreased isotope incorporation in the light, suggesting that their heterotrophic metabolism, particularly when occurring on particles, might increase at night or may be inhibited by sunlight. These results show that light influences particle degradation and C and N incorporation by attached bacteria, suggesting that the transfer between particulate and free-living phases are likely affected by external factors that change with the light regime, such as time of day, depth and season.


2019 ◽  
Vol 35 (2) ◽  
pp. 83-90 ◽  
Author(s):  
Lydia Beaudrot ◽  
Andrew J. Marshall

AbstractUnderstanding why ecological communities contain the species they do is a long-standing question in ecology. Two common mechanisms that affect the species found within communities are dispersal limitation and environmental filtering. Correctly identifying the relative influences of these mechanisms has important consequences for our understanding of community assembly. Here variable selection was used to identify the environmental variables that best predict tropical forest primate community similarity in four biogeographic regions: the Neotropics, Afrotropics, Madagascar and the island of Borneo in South-East Asia. The environmental variables included net primary productivity and altitude, as well as multiple temperature, precipitation and topsoil variables. Using the best environmental variables in each region, Mantel and partial Mantel tests were used to reanalyse data from a previously published study. The proportion of variance explained increased for each region. Despite increases, much of the variation remained unexplained for all regions (R2: Africa = 0.45, South America = 0.16, Madagascar = 0.28, Borneo = 0.10), likely due to different evolutionary and biogeographic histories within each region. Nonetheless, substantial variation among regions in the environmental variables that best predicted primate community similarity were documented. For example, none of the 14 environmental variables was included for all four regions, yet each variable was included for at least one region. Contrary to prior results, environmental filtering was an important assembly mechanism for primate communities in tropical forests worldwide. Geographic distance more strongly predicted African and South American communities whereas environmental distance more strongly predicted Malagasy and Bornean communities. These results suggest that dispersal limitation structures primate communities more strongly than environmental filtering in Africa and in South America whereas environmental filtering structures primate communities more strongly than dispersal limitation in Madagascar and Borneo. For communities defined by genera, environmental distance more strongly predicted primate communities than geographic distance in all four regions, which suggests that environmental filtering is a more influential assembly mechanism at the genus level. Therefore, a more nuanced consideration of environmental variables affects conclusions about the influences of environmental filtering and dispersal limitation on primate community structure.


Sign in / Sign up

Export Citation Format

Share Document