scholarly journals APPRIS principal isoforms and MANE Select transcripts in clinical variant interpretation

2021 ◽  
Author(s):  
Fernando Pozo ◽  
Jose Manuel Rodriguez ◽  
Jesus Vazquez ◽  
Michael L. Tress

AbstractMost coding genes are able to generate multiple alternatively spliced transcripts. Determining which of these transcript variants produces the main protein isoform, and which of a gene’s multiple splice variants are functionally important, is crucial in comparative genomics and essential for clinical variant interpretation.Here we show that the principal isoforms chosen by APPRIS and the MANE Select variants provide the best approximations of the main cellular protein isoforms. Principal isoforms are predicted from conservation and from protein features, and MANE transcripts are chosen from the consensus between teams of expert manual curators. APPRIS principal isoforms coincide in over 94% of coding genes with MANE Select transcripts and the two methods are particularly discriminating when they agree on the main splice variant. Where the two methods agree, the splice variants coincide with the main isoform detected in proteomics experiments in 98.2% of genes with multiple protein isoforms.We also find that almost all ClinVar pathogenic mutations map to MANE Select or APPRIS principal isoforms. Where APPRIS and MANE agree on the main isoform, 99.93% of validated pathogenic variants map to principal rather than alternative exons. MANE Plus Clinical transcripts cover most validated pathogenic mutations in alternative coding exons. TRIFID functional importance scores are particularly useful for distinguishing clinically important alternative isoforms: the highest scoring TRIFID isoforms are more than 300 times more likely to have validated pathogenic mutations.We find that APPRIS, MANE and TRIFID are important for determining the biological relevance of splice isoforms and should be an essential part of clinical variant interpretation.

2010 ◽  
Vol 38 (1) ◽  
pp. 223-228 ◽  
Author(s):  
Simon S. McDade ◽  
Dennis J. McCance

The p53 family of transcription factors is made up of p53, p63 and p73, which share significant structural homology. In particular, transcriptional complexity and the expression of multiple protein isoforms are an emergent trait of all family members. p63 is the evolutionarily eldest member of the p53 family and the various isoforms have critical roles in the development of stratifying epithelia. Recent results have uncovered additional splice variants, adding to the complexity of the transcriptional architecture of p63. These observations and the emerging extensive interplay between p63 and p53 in development, proliferation and differentiation underline the importance of considering all isoforms and family members in studies of the function of p53 family members.


2021 ◽  
Vol 4 (3) ◽  
pp. 62
Author(s):  
Giulia Riolo ◽  
Silvia Cantara ◽  
Claudia Ricci

Alternative splicing (AS) is a crucial process to enhance gene expression driving organism development. Interestingly, more than 95% of human genes undergo AS, producing multiple protein isoforms from the same transcript. Any alteration (e.g., nucleotide substitutions, insertions, and deletions) involving consensus splicing regulatory sequences in a specific gene may result in the production of aberrant and not properly working proteins. In this review, we introduce the key steps of splicing mechanism and describe all different types of genomic variants affecting this process (splicing variants in acceptor/donor sites or branch point or polypyrimidine tract, exonic, and deep intronic changes). Then, we provide an updated approach to improve splice variants detection. First, we review the main computational tools, including the recent Machine Learning-based algorithms, for the prediction of splice site variants, in order to characterize how a genomic variant interferes with splicing process. Next, we report the experimental methods to validate the predictive analyses are defined, distinguishing between methods testing RNA (transcriptomics analysis) or proteins (proteomics experiments). For both prediction and validation steps, benefits and weaknesses of each tool/procedure are accurately reported, as well as suggestions on which approaches are more suitable in diagnostic rather than in clinical research.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 547
Author(s):  
Iolia Akaev ◽  
Siavash Rahimi ◽  
Olubukola Onifade ◽  
Francis John Edward Gardner ◽  
David Castells-Rufas ◽  
...  

The aim of this audit was to evaluate the usefulness and serviceability of testing for pathogenic mutations in BRCA1 or BRCA2 (BRCA1/2) genes in ovarian cancer (OC) patients. One hundred and thirty-five patients with more common histological sub-types of OC were retrospectively identified between 2011 and 2019. The fail rate of the molecular analysis was 7.4% (10/135). One hundred and twenty-five records were evaluated: 99 (79.2%) patients had wild-type BRCA (both somatic and germline); tumour BRCA1/2 (tBRCA1/2) pathogenic mutations were found in 20 (16%) patients with distribution between BRCA1 and BRCA2 being 40% and 60%, respectively; 13 (10.4%) patients with pathogenic variants had germline mutations; and tBRCA1/2 with variant of unknown significance (VUS), in the absence of pathogenic BRCA1 or BRCA2 variants, was detected in 6 (4.8%) patients. Our data show that expanding the molecular service to the routine first-tumour testing for patients with OC will potentially increase the detection rate of BRCA mutations, thereby providing early benefits of PARP inhibitors therapy. The tumour testing service should continue to be offered to newly diagnosed patients with high-grade epithelial cancers, including high-grade serous carcinoma, but also with carcinosarcomas and poorly-differentiated metastatic adenocarcinomas of unknown origin.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 320
Author(s):  
Lorissa I. McDougall ◽  
Ryan M. Powell ◽  
Magdalena Ratajska ◽  
Chi F. Lynch-Sutherland ◽  
Sultana Mehbuba Hossain ◽  
...  

Melanoma comprises <5% of cutaneous malignancies, yet it causes a significant proportion of skin cancer-related deaths worldwide. While new therapies for melanoma have been developed, not all patients respond well. Thus, further research is required to better predict patient outcomes. Using long-range nanopore sequencing, RT-qPCR, and RNA sequencing analyses, we examined the transcription of BARD1 splice isoforms in melanoma cell lines and patient tissue samples. Seventy-six BARD1 mRNA variants were identified in total, with several previously characterised isoforms (γ, φ, δ, ε, and η) contributing to a large proportion of the expressed transcripts. In addition, we identified four novel splice events, namely, Δ(E3_E9), ▼(i8), IVS10+131▼46, and IVS10▼176, occurring in various combinations in multiple transcripts. We found that short-read RNA-Seq analyses were limited in their ability to predict isoforms containing multiple non-contiguous splicing events, as compared to long-range nanopore sequencing. These studies suggest that further investigations into the functional significance of the identified BARD1 splice variants in melanoma are warranted.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Philipp Rentzsch ◽  
Max Schubach ◽  
Jay Shendure ◽  
Martin Kircher

Abstract Background Splicing of genomic exons into mRNAs is a critical prerequisite for the accurate synthesis of human proteins. Genetic variants impacting splicing underlie a substantial proportion of genetic disease, but are challenging to identify beyond those occurring at donor and acceptor dinucleotides. To address this, various methods aim to predict variant effects on splicing. Recently, deep neural networks (DNNs) have been shown to achieve better results in predicting splice variants than other strategies. Methods It has been unclear how best to integrate such process-specific scores into genome-wide variant effect predictors. Here, we use a recently published experimental data set to compare several machine learning methods that score variant effects on splicing. We integrate the best of those approaches into general variant effect prediction models and observe the effect on classification of known pathogenic variants. Results We integrate two specialized splicing scores into CADD (Combined Annotation Dependent Depletion; cadd.gs.washington.edu), a widely used tool for genome-wide variant effect prediction that we previously developed to weight and integrate diverse collections of genomic annotations. With this new model, CADD-Splice, we show that inclusion of splicing DNN effect scores substantially improves predictions across multiple variant categories, without compromising overall performance. Conclusions While splice effect scores show superior performance on splice variants, specialized predictors cannot compete with other variant scores in general variant interpretation, as the latter account for nonsense and missense effects that do not alter splicing. Although only shown here for splice scores, we believe that the applied approach will generalize to other specific molecular processes, providing a path for the further improvement of genome-wide variant effect prediction.


2014 ◽  
Vol 88 (24) ◽  
pp. 14412-14425 ◽  
Author(s):  
K. Caviness ◽  
L. Cicchini ◽  
M. Rak ◽  
M. Umashankar ◽  
F. Goodrum

1997 ◽  
Vol 18 (1) ◽  
pp. 27-35 ◽  
Author(s):  
G N Europe-Finner ◽  
E Cartwright ◽  
J Bellinger ◽  
H J Mardon ◽  
D H Barlow ◽  
...  

ABSTRACT Granulosa cells are essential for follicular development and corpus luteum formation and their functions are regulated by gonadotrophins through G protein-coupled receptors. The dominant second messenger pathway involves the stimulation of cyclic AMP formation by Gαs-linked receptors. In this paper we have investigated the expression of Gαs mRNA splice variants in relation to expression of Gαs protein isoforms in granulosa cells obtained from patients undergoing in vitro fertilization. We have carried out ribonuclease protection assays using cRNA riboprobes which are capable of detecting all Gαs mRNA isoforms as well as quantifying total amounts of Gαs mRNA. Granulosa cells express the message for Gαs-Large and Gαs-Small and the presence of two distinct protein products was confirmed by immunoblotting using the antibody RM/1. Moreover, the data show that a significant fraction of Gαs-Large and Gαs-Small mRNAs contain an extra CAG codon. This should generate proteins with an extra serine residue, resulting in Gαs variants with the consensus sequence of a protein kinase C phosphorylation site. These results highlight the possible interaction between different signalling pathways in the control of cAMP production and the need to investigate the relationship between Gαs variants and different adenylyl cyclase isozymes in patients with normal and abnormal ovarian function.


2005 ◽  
Vol 25 (4) ◽  
pp. 1402-1414 ◽  
Author(s):  
René E. M. A. van Herpen ◽  
Ralph J. A. Oude Ophuis ◽  
Mietske Wijers ◽  
Miranda B. Bennink ◽  
Fons A. J. van de Loo ◽  
...  

ABSTRACT Myotonic dystrophy protein kinase (DMPK) is a Ser/Thr-type protein kinase with unknown function, originally identified as the product of the gene that is mutated by triplet repeat expansion in patients with myotonic dystrophy type 1 (DM1). Alternative splicing of DMPK transcripts results in multiple protein isoforms carrying distinct C termini. Here, we demonstrate by expressing individual DMPKs in various cell types, including C2C12 and DMPK −/− myoblast cells, that unique sequence arrangements in these tails control the specificity of anchoring into intracellular membranes. Mouse DMPK A and C were found to associate specifically with either the endoplasmic reticulum (ER) or the mitochondrial outer membrane, whereas the corresponding human DMPK A and C proteins both localized to mitochondria. Expression of mouse and human DMPK A—but not C—isoforms in mammalian cells caused clustering of ER or mitochondria. Membrane association of DMPK isoforms was resistant to alkaline conditions, and mutagenesis analysis showed that proper anchoring was differentially dependent on basic residues flanking putative transmembrane domains, demonstrating that DMPK tails form unique tail anchors. This work identifies DMPK as the first kinase in the class of tail-anchored proteins, with a possible role in organelle distribution and dynamics.


Sign in / Sign up

Export Citation Format

Share Document