scholarly journals A shared brain system forming confidence judgment across cognitive domains

2021 ◽  
Author(s):  
Marion Rouault ◽  
Mael Lebreton ◽  
Mathias Pessiglione

Confidence is typically defined as a subjective judgment about whether a decision is right. Decisions are based on sources of information that come from various cognitive domains and are processed in different brain systems. An unsettled question is whether the brain computes confidence in a similar manner whatever the domain or in a manner that would be idiosyncratic to each domain. To address this issue, human participants of both sexes performed a new paradigm probing confidence in decisions made about the same material (history and geography statements), but based on different cognitive processes: semantic memory for deciding whether the statement was true or false, and duration perception for deciding whether the statement display was long or short. At the behavioral level, we found that the same factors (difficulty, accuracy, response time and confidence in the preceding decision) predicted confidence judgments in both tasks. At the neural level, we observed using fMRI that confidence judgments in both tasks were associated to activity in the same brain regions: positively in the ventromedial prefrontal cortex and negatively in a prefronto-parietal network. Together, these findings suggest the existence of a shared brain system that generates confidence judgments in a similar manner across cognitive domains.

2017 ◽  
Vol 29 (6) ◽  
pp. 1033-1043 ◽  
Author(s):  
Thomas Hinault ◽  
Jean-Michel Badier ◽  
Sylvain Baillet ◽  
Patrick Lemaire

In a wide variety of cognitive domains, performance is determined by the selection and execution of cognitive strategies to solve problems. We used magnetoencephalography to identify the brain regions involved and specify the time course of dynamic modulations of executive control processes during strategy execution. Participants performed a computational estimation task in which they were instructed to execute a poorer or better strategy to estimate results of two-digit multiplication problems. When participants were asked to execute the poorer strategy, two distinct sets of brain activations were identified, depending on whether the poorer strategy (engaging the left inferior frontal junction) or the better strategy (engaging ACC) had been executed on the immediately preceding items. Our findings also revealed the time course of activations in regions involved in sequential modulations of cognitive control processes during arithmetic strategy execution. These findings point at processes of proactive preparation on items after poorer strategy items and dynamics of reactive adjustments after better strategy items.


2021 ◽  
Author(s):  
Shrikanth Kulashekhar ◽  
Sarah Maass ◽  
Hedderik van Rijn ◽  
Domenica Bueti

Abstract Neuronal tuning and topography are mechanisms widely used in the brain to represent sensory information and also abstract features like time. In humans, temporal topography has been shown in a wide circuit of brain regions. However, it is unclear whether chronotopic maps are specific to vision, whether they map time in an absolute or relative fashion, to what extent they reflect objective or subjective time and whether they are influenced by temporal context. Here we asked human participants to reproduce the durations of sounds in two, partially overlapping, temporal contexts while we record high-spatial resolution fMRI. Both model-based and data driven analyses show the presence of auditory chronomaps in the auditory parabelt, intraparietal sulcus, and in supplementary motor area. Most importantly, when the same physical duration is presented in different temporal contexts, and thus perceived differently, different neuronal units respond to it. Those units are also spatially shifted according to the relative position of the perceived duration within each context. Finally, the pattern of activity is more similar within rather than across contexts suggesting their pivotal role in shaping the maps. These results highlight two important properties of chronomaps: their flexibility of representation and their dependency on the context.


2004 ◽  
Vol 359 (1451) ◽  
pp. 1709-1726 ◽  
Author(s):  
S. Zeki ◽  
O. R. Goodenough ◽  
Oliver R. Goodenough ◽  
Kristin Prehn

Developments in cognitive neuroscience are providing new insights into the nature of normative judgment. Traditional views in such disciplines as philosophy, religion, law, psychology and economics have differed over the role and usefulness of intuition and emotion in judging blameworthiness. Cognitive psychology and neurobiology provide new tools and methods for studying questions of normative judgment. Recently, a consensus view has emerged, which recognizes important roles for emotion and intuition and which suggests that normative judgment is a distributed process in the brain. Testing this approach through lesion and scanning studies has linked a set of brain regions to such judgment, including the ventromedial prefrontal cortex, orbitofrontal cortex, posterior cingulate cortex and posterior superior temporal sulcus. Better models of emotion and intuition will help provide further clarification of the processes involved. The study of law and justice is less well developed. We advance a model of law in the brain which suggests that law can recruit a wider variety of sources of information and paths of processing than do the intuitive moral responses that have been studied so far. We propose specific hypotheses and lines of further research that could help test this approach.


2021 ◽  
Author(s):  
Shrikanth Kulashekhar ◽  
Sarah Maass ◽  
Hedderik Van Rijn ◽  
Domenica Bueti

Abstract Neuronal tuning and topography are mechanisms widely used in the brain to represent not only sensory information but also abstract features like numerosity and time. In humans, temporal topography has been shown recently in a wide circuit of brain regions, from lateral occipital to inferior parietal and premotor regions. However, it remains unclear whether chronotopic maps are specific to vision, whether they map time in an absolute or relative fashion, and to what extent they reflect objective or subjective, perceived time and whether they are influenced by temporal context. Here we asked human participants to reproduce the durations of sounds in two, partially overlapping, temporal contexts while we recorded high-spatial resolution fMRI. Both model-based and data driven analysis approaches show the presence of auditory chronomaps in the auditory parabelt, intraparietal sulcus, and in the supplementary motor area (SMA). Most importantly, when the same physical duration is presented in different temporal contexts, and thus perceived differently, different neuronal units respond to it. Those units were also spatially shifted on the cortical surface according to the relative position of the perceived duration within each context. Finally, voxels did not change their preferences across contexts and their pattern of activity was more similar within rather than across them, suggesting a pivotal role of the context in shaping the maps. These results highlight two important properties of human chronomaps: their flexibility of representation due to perception and their dependency on temporal context.


2020 ◽  
Vol 21 ◽  
Author(s):  
Sayed Md Mumtaz ◽  
Gautam Bhardwaj ◽  
Shikha Goswami ◽  
Rajiv Kumar Tonk ◽  
Ramesh K. Goyal ◽  
...  

: The Glioblastoma Multiforme (GBM; grade IV astrocytoma) exhort tumor of star-shaped glial cell in the brain. It is a fast-growing tumor that spreads to nearby brain regions specifically to cerebral hemispheres in frontal and temporal lobes. The etiology of GBM is unknown, but major risk factors are genetic disorder like neurofibromatosis and schwanomatosis which develop the tumor in the nervous system. The management of GBM with chemo-radio therapy leads to resistance and current drug regimen like Temozolomide (TMZ) is less efficacious. The reasons behind failure of drugs are due to DNA alkylation in cell cycle by enzyme DNA guanidase and mitochondrial dysfunction. Naturally occurring bio-active compounds from plants known as phytochemicals, serve as vital sources for anti-cancer drugs. Some typical examples include taxol analogs, vinca alkaloids such as vincristine, vinblastine, podophyllotoxin analogs, camptothecin, curcumin, aloe emodin, quercetin, berberine e.t.c. These phytochemicals often act via regulating molecular pathways which are implicated in growth and progression of cancers. However the challenges posed by the presence of BBB/BBTB to restrict passage of these phytochemicals, culminates in their low bioavailability and relative toxicity. In this review we integrated nanotech as novel drug delivery system to deliver phytochemicals from traditional medicine to the specific site within the brain for the management of GBM.


2020 ◽  
Vol 20 (9) ◽  
pp. 800-811 ◽  
Author(s):  
Ferath Kherif ◽  
Sandrine Muller

In the past decades, neuroscientists and clinicians have collected a considerable amount of data and drastically increased our knowledge about the mapping of language in the brain. The emerging picture from the accumulated knowledge is that there are complex and combinatorial relationships between language functions and anatomical brain regions. Understanding the underlying principles of this complex mapping is of paramount importance for the identification of the brain signature of language and Neuro-Clinical signatures that explain language impairments and predict language recovery after stroke. We review recent attempts to addresses this question of language-brain mapping. We introduce the different concepts of mapping (from diffeomorphic one-to-one mapping to many-to-many mapping). We build those different forms of mapping to derive a theoretical framework where the current principles of brain architectures including redundancy, degeneracy, pluri-potentiality and bow-tie network are described.


Author(s):  
Antonina Kouli ◽  
Marta Camacho ◽  
Kieren Allinson ◽  
Caroline H. Williams-Gray

AbstractParkinson’s disease dementia is neuropathologically characterized by aggregates of α-synuclein (Lewy bodies) in limbic and neocortical areas of the brain with additional involvement of Alzheimer’s disease-type pathology. Whilst immune activation is well-described in Parkinson’s disease (PD), how it links to protein aggregation and its role in PD dementia has not been explored. We hypothesized that neuroinflammatory processes are a critical contributor to the pathology of PDD. To address this hypothesis, we examined 7 brain regions at postmortem from 17 PD patients with no dementia (PDND), 11 patients with PD dementia (PDD), and 14 age and sex-matched neurologically healthy controls. Digital quantification after immunohistochemical staining showed a significant increase in the severity of α-synuclein pathology in the hippocampus, entorhinal and occipitotemporal cortex of PDD compared to PDND cases. In contrast, there was no difference in either tau or amyloid-β pathology between the groups in any of the examined regions. Importantly, we found an increase in activated microglia in the amygdala of demented PD brains compared to controls which correlated significantly with the extent of α-synuclein pathology in this region. Significant infiltration of CD4+ T lymphocytes into the brain parenchyma was commonly observed in PDND and PDD cases compared to controls, in both the substantia nigra and the amygdala. Amongst PDND/PDD cases, CD4+ T cell counts in the amygdala correlated with activated microglia, α-synuclein and tau pathology. Upregulation of the pro-inflammatory cytokine interleukin 1β was also evident in the substantia nigra as well as the frontal cortex in PDND/PDD versus controls with a concomitant upregulation in Toll-like receptor 4 (TLR4) in these regions, as well as the amygdala. The evidence presented in this study show an increased immune response in limbic and cortical brain regions, including increased microglial activation, infiltration of T lymphocytes, upregulation of pro-inflammatory cytokines and TLR gene expression, which has not been previously reported in the postmortem PDD brain.


Author(s):  
Sarah F. Beul ◽  
Alexandros Goulas ◽  
Claus C. Hilgetag

AbstractStructural connections between cortical areas form an intricate network with a high degree of specificity. Many aspects of this complex network organization in the adult mammalian cortex are captured by an architectonic type principle, which relates structural connections to the architectonic differentiation of brain regions. In particular, the laminar patterns of projection origins are a prominent feature of structural connections that varies in a graded manner with the relative architectonic differentiation of connected areas in the adult brain. Here we show that the architectonic type principle is already apparent for the laminar origins of cortico-cortical projections in the immature cortex of the macaque monkey. We find that prenatal and neonatal laminar patterns correlate with cortical architectonic differentiation, and that the relation of laminar patterns to architectonic differences between connected areas is not substantially altered by the complete loss of visual input. Moreover, we find that the degree of change in laminar patterns that projections undergo during development varies in proportion to the relative architectonic differentiation of the connected areas. Hence, it appears that initial biases in laminar projection patterns become progressively strengthened by later developmental processes. These findings suggest that early neurogenetic processes during the formation of the brain are sufficient to establish the characteristic laminar projection patterns. This conclusion is in line with previously suggested mechanistic explanations underlying the emergence of the architectonic type principle and provides further constraints for exploring the fundamental factors that shape structural connectivity in the mammalian brain.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florian Bitsch ◽  
Philipp Berger ◽  
Andreas Fink ◽  
Arne Nagels ◽  
Benjamin Straube ◽  
...  

AbstractThe ability to generate humor gives rise to positive emotions and thus facilitate the successful resolution of adversity. Although there is consensus that inhibitory processes might be related to broaden the way of thinking, the neural underpinnings of these mechanisms are largely unknown. Here, we use functional Magnetic Resonance Imaging, a humorous alternative uses task and a stroop task, to investigate the brain mechanisms underlying the emergence of humorous ideas in 24 subjects. Neuroimaging results indicate that greater cognitive control abilities are associated with increased activation in the amygdala, the hippocampus and the superior and medial frontal gyrus during the generation of humorous ideas. Examining the neural mechanisms more closely shows that the hypoactivation of frontal brain regions is associated with an hyperactivation in the amygdala and vice versa. This antagonistic connectivity is concurrently linked with an increased number of humorous ideas and enhanced amygdala responses during the task. Our data therefore suggests that a neural antagonism previously related to the emergence and regulation of negative affective responses, is linked with the generation of emotionally positive ideas and may represent an important neural pathway supporting mental health.


Sign in / Sign up

Export Citation Format

Share Document