scholarly journals In situ structures of membrane-assisted assembly and selective autophagy of enteroviruses

2021 ◽  
Author(s):  
Selma Dahmane ◽  
Adeline Kerviel ◽  
Dustin R. Morado ◽  
Kasturika Shankar ◽  
Björn Ahlman ◽  
...  

SummaryEnteroviruses are non-enveloped positive-sense RNA viruses that cause diverse diseases in humans. Their rapid multiplication depends on remodeling of cytoplasmic membranes for viral genome replication. New virions are thought to be assembled near the genome replication sites and are released in vesicles through secretory autophagy. Here, we use cryo-electron tomography to show that poliovirus assembles directly on replication membranes. Assembly progression beyond a membrane-bound half-capsid intermediate requires the host lipid kinase VPS34, whereas inhibition of ULK1, the initiator of canonical autophagy, leads to accumulation of virions in vast intracellular arrays followed by an increased release at later time points. We further identify multiple layers of selectivity in virus-induced autophagy, with a strong selection for RNA-loaded virions over empty capsids and the segregation of virions from a second class of autophagic membranes containing protein filaments bundles. These findings provide an integrated structural framework for multiple stages of the poliovirus life cycle.

2018 ◽  
Author(s):  
Zhuan Qin ◽  
Akarsh Manne ◽  
Jiagang Tu ◽  
Zhou Yu ◽  
Kathryn Lees ◽  
...  

ABSTRACTPeriplasmic flagella are essential for the distinct morphology and motility of spirochetes. A flagella-specific Type III secretion system (fT3SS) composed of a membrane-bound export apparatus and a cytosolic ATPase complex is responsible for the assembly of the periplasmic flagella. Here, we combine cryo-electron tomography and mutagenesis approaches to characterize the fT3SS machine in the Lyme disease spirochete Borrelia burgdorferi. We define the fT3SS machine by systematically characterizing mutants lacking key component genes. We discover that a distinct cytosolic ATPase complex is attached to the flagellar C-ring through multiple spoke-like linkers. The ATPase complex not only strengthens structural rigidity of the C-ring, but also undergoes conformational changes in concert with flagellar rotation. Our studies provide structural framework to uncover the unique mechanisms underlying assembly and rotation of the periplasmic flagella and may provide the bases for the development of novel therapeutic strategies against several pathogenic spirochetes.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Raquel Tenorio ◽  
Isabel Fernández de Castro ◽  
Jonathan J. Knowlton ◽  
Paula F. Zamora ◽  
Christopher H. Lee ◽  
...  

ABSTRACTLike most viruses that replicate in the cytoplasm, mammalian reoviruses assemble membranous neo-organelles called inclusions that serve as sites of viral genome replication and particle morphogenesis. Viral inclusion formation is essential for viral infection, but how these organelles form is not well understood. We investigated the biogenesis of reovirus inclusions. Correlative light and electron microscopy showed that endoplasmic reticulum (ER) membranes are in contact with nascent inclusions, which form by collections of membranous tubules and vesicles as revealed by electron tomography. ER markers and newly synthesized viral RNA are detected in inclusion internal membranes. Live-cell imaging showed that early in infection, the ER is transformed into thin cisternae that fragment into small tubules and vesicles. We discovered that ER tubulation and vesiculation are mediated by the reovirus σNS and μNS proteins, respectively. Our results enhance an understanding of how viruses remodel cellular compartments to build functional replication organelles.IMPORTANCEViruses modify cellular structures to build replication organelles. These organelles serve as sites of viral genome replication and particle morphogenesis and are essential for viral infection. However, how these organelles are constructed is not well understood. We found that the replication organelles of mammalian reoviruses are formed by collections of membranous tubules and vesicles derived from extensive remodeling of the peripheral endoplasmic reticulum (ER). We also observed that ER tubulation and vesiculation are triggered by the reovirus σNS and μNS proteins, respectively. Our results enhance an understanding of how viruses remodel cellular compartments to build functional replication organelles and provide functions for two enigmatic reovirus replication proteins. Most importantly, this research uncovers a new mechanism by which viruses form factories for particle assembly.


2019 ◽  
Vol 117 (2) ◽  
pp. 1069-1080 ◽  
Author(s):  
Sahradha Albert ◽  
Wojciech Wietrzynski ◽  
Chia-Wei Lee ◽  
Miroslava Schaffer ◽  
Florian Beck ◽  
...  

To promote the biochemical reactions of life, cells can compartmentalize molecular interaction partners together within separated non–membrane-bound regions. It is unknown whether this strategy is used to facilitate protein degradation at specific locations within the cell. Leveraging in situ cryo-electron tomography to image the native molecular landscape of the unicellular alga Chlamydomonas reinhardtii, we discovered that the cytosolic protein degradation machinery is concentrated within ∼200-nm foci that contact specialized patches of endoplasmic reticulum (ER) membrane away from the ER–Golgi interface. These non–membrane-bound microcompartments exclude ribosomes and consist of a core of densely clustered 26S proteasomes surrounded by a loose cloud of Cdc48. Active proteasomes in the microcompartments directly engage with putative substrate at the ER membrane, a function canonically assigned to Cdc48. Live-cell fluorescence microscopy revealed that the proteasome clusters are dynamic, with frequent assembly and fusion events. We propose that the microcompartments perform ER-associated degradation, colocalizing the degradation machinery at specific ER hot spots to enable efficient protein quality control.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 480
Author(s):  
Lin Tao ◽  
Xiaoyun He ◽  
Yanting Jiang ◽  
Yufang Liu ◽  
Yina Ouyang ◽  
...  

The litter size of domestic goats and sheep is an economically important trait that shows variation within breeds. Strenuous efforts have been made to understand the genetic mechanisms underlying prolificacy in goats and sheep. However, there has been a paucity of research on the genetic convergence of prolificacy between goats and sheep, which likely arose because of similar natural and artificial selection forces. Here, we performed comparative genomic and transcriptomic analyses to identify the genetic convergence of prolificacy between goats and sheep. By combining genomic and transcriptomic data for the first time, we identified this genetic convergence in (1) positively selected genes (CHST11 and SDCCAG8), (2) differentially expressed genes (SERPINA14, RSAD2, and PPIG at follicular phase, and IGF1, GPRIN3, LIPG, SLC7A11, and CHST15 at luteal phase), and (3) biological pathways (genomic level: osteoclast differentiation, ErbB signaling pathway, and relaxin signaling pathway; transcriptomic level: the regulation of viral genome replication at follicular phase, and protein kinase B signaling and antigen processing and presentation at luteal phase). These results indicated the potential physiological convergence and enhanced our understanding of the overlapping genetic makeup underlying litter size in goats and sheep.


2014 ◽  
Vol 81 (3) ◽  
pp. 1024-1031 ◽  
Author(s):  
Bhagyalakshmi Kalidass ◽  
Muhammad Farhan Ul-Haque ◽  
Bipin S. Baral ◽  
Alan A. DiSpirito ◽  
Jeremy D. Semrau

ABSTRACTIt is well known that copper is a key factor regulating expression of the two forms of methane monooxygenase found in proteobacterial methanotrophs. Of these forms, the cytoplasmic, or soluble, methane monooxygenase (sMMO) is expressed only at low copper concentrations. The membrane-bound, or particulate, methane monooxygenase (pMMO) is constitutively expressed with respect to copper, and such expression increases with increasing copper. Recent findings have shown that copper uptake is mediated by a modified polypeptide, or chalkophore, termed methanobactin. Although methanobactin has high specificity for copper, it can bind other metals, e.g., gold. Here we show that inMethylosinus trichosporiumOB3b, sMMO is expressed and active in the presence of copper if gold is also simultaneously present. Such expression appears to be due to gold binding to methanobactin produced byM. trichosporiumOB3b, thereby limiting copper uptake. Such expression and activity, however, was significantly reduced if methanobactin preloaded with copper was also added. Further, quantitative reverse transcriptase PCR (RT-qPCR) of transcripts of genes encoding polypeptides of both forms of MMO and SDS-PAGE results indicate that both sMMO and pMMO can be expressed when copper and gold are present, as gold effectively competes with copper for binding to methanobactin. Such findings suggest that under certain geochemical conditions, both forms of MMO may be expressed and activein situ. Finally, these findings also suggest strategies whereby field sites can be manipulated to enhance sMMO expression, i.e., through the addition of a metal that can compete with copper for binding to methanobactin.


2008 ◽  
Vol 161 (3) ◽  
pp. 459-468 ◽  
Author(s):  
Roman I. Koning ◽  
Sandra Zovko ◽  
Montserrat Bárcena ◽  
Gert T. Oostergetel ◽  
Henk K. Koerten ◽  
...  

2009 ◽  
Vol 390 (2) ◽  
pp. 137-144 ◽  
Author(s):  
Yingmiao Liu ◽  
Chien-Tsun Kuan ◽  
Jing Mi ◽  
Xiuwu Zhang ◽  
Bryan M. Clary ◽  
...  

Abstract Epidermal growth factor receptor variant III (EGFRvIII) is a glycoprotein uniquely expressed in glioblastoma, but not in normal brain tissues. To develop targeted therapies for brain tumors, we selected RNA aptamers against the histidine-tagged EGFRvIII ectodomain, using an Escherichia coli system for protein expression and purification. Representative aptamer E21 has a dissociation constant (Kd) of 33×10-9 m, and exhibits high affinity and specificity for EGFRvIII in ELISA and surface plasmon resonance assays. However, selected aptamers cannot bind the same protein expressed from eukaryotic cells because glycosylation, a post-translational modification present only in eukaryotic systems, significantly alters the structure of the target protein. By transfecting EGFRvIII aptamers into cells, we find that membrane-bound, glycosylated EGFRvIII is reduced and the percentage of cells undergoing apoptosis is increased. We postulate that transfected aptamers can interact with newly synthesized EGFRvIII, disrupt proper glycosylation, and reduce the amount of mature EGFRvIII reaching the cell surface. Our work establishes the feasibility of disrupting protein post-translational modifications in situ with aptamers. This finding is useful for elucidating the function of proteins of interest with various modifications, as well as dissecting signal transduction pathways.


2014 ◽  
Author(s):  
◽  
Olufemi Fasina

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Viruses as obligate intracellular metabolic parasite require the capacity to orchestrate and modulate the host environment either in the nucleus or cytoplasm for their efficient reproductive life cycle. This warrants the use of diverse range of proteins expressed from the viral genome with the ability of regulating viral genome replication, transcription and translation, in addition antagonizing host factors inhibitory to the virus. Therefore, in order to achieve these goals, viruses utilizes gene expression strategies to expand their coding capacity. Gene expression mechanism such as transcription initiation, capping, splicing and 3�-end processing afford viruses the opportunities to utilize the eukaryotic metabolic machineries for generating proteome diversity. Parvoviruses and other DNA viruses effectively capitalize on their use of nuclear eukaryotic metabolic machineries to co-opt host cell factors for optimal replication and gene expression. Parvoviruses with small genome size and overlapping open reading frames utilize alternative transcription initiation, alternative splicing and alternative polyadenylation to co-ordinate the expression of its non-structural and structural proteins. In this work, we have characterized how two parvoviruses; Dependovirus AAV5 and Bocavirus Minute virus of canine (MVC) utilize alternative gene expression mechanisms and strategies to optimize expression of viral proteins from their genome.


2000 ◽  
Vol 14 (1) ◽  
pp. 69-75 ◽  
Author(s):  
G.D. Offner ◽  
R.F. Troxler

The existence of high-molecular-weight glycoproteins in saliva and salivary secretions has been recognized for nearly 30 years. These proteins, called mucins, are essential for oral health and perform many diverse functions in the oral cavity. Mucins have been intensively studied, and much has been learned about their biochemical properties and their interactions with oral micro-organisms and other salivary proteins. In the past several years, the major high-molecular-weight mucin in salivary secretions has been identified as MUC5B, one of a family of 11 human mucin gene products expressed in tissue-specific patterns in the gastrointestinal, respiratory, and reproductive tracts. MUC5B is one of four gel-forming mucins which exist as multimeric proteins with molecular weights greater than 20-40 million daltons. The heavily glycosylated mucin multimers form viscous layers which protect underlying epithelial surfaces from microbial, mechanical, and chemical assault. Another class of mucin molecules, the membrane-bound mucins, is structurally and functionally distinct from the gel-forming mucins. These proteins do not form multimers and can exist as both secreted and membrane-bound forms, with the latter anchored to epithelial cell membranes through a short membrane-spanning domain. In the present work, we show that two of the membrane-bound mucins, MUC1 and MUC4, are expressed in all major human salivary glands as well as in buccal epithelial cells. While the functions of these mucins in the oral environment are not understood, it is possible that they form a structural framework on the cell surface which not only is cytoprotective, but also may serve as a scaffold upon which MUC5B, and possibly other salivary proteins, assemble.


Sign in / Sign up

Export Citation Format

Share Document