scholarly journals Oxytocin regulation of social transmission of fear in zebrafish reveals its evolutionary conserved role in emotional contagion

2021 ◽  
Author(s):  
Ibukun Akinrinade ◽  
Kyriacos Kareklas ◽  
Michael Gliksberg ◽  
Giovanni Petri ◽  
Gil Levkowitz ◽  
...  

Emotional contagion is the most ancestral form of empathy that relies on simple perception-action mechanisms, on top of which more complex forms of empathic behaviors, such as consolation and helping, have evolved. Here we tested to what extent the proximate mechanisms of emotional contagion are evolutionary conserved by assessing the role of oxytocin, known to regulate empathic behaviors in mammals, in social fear contagion in zebrafish, which represents an evolutionary divergent line to that of tetrapods, within vertebrates. Using mutants for the ligand of the fish oxytocin nonapeptide and both of its receptors in zebrafish we showed that oxytocin is necessary for observer zebrafish to copy the distressed behavior of conspecific demonstrators. Exogeneous administration of oxytocin to the ligand mutant rescued the ability of observers to express social fear transmission, indicating that oxytocin is not only necessary but also sufficient for emotional contagion. The brain regions in the ventral telencephalon that are associated with emotional contagion in zebrafish are homologous to those known to be involved in the same process in rodents (e.g. striatum, lateral septum), and receive direct projections from oxytocinergic neurons located in the preoptic area. Finally, we ruled out the hypothesis that social transmission of fear in zebrafish merely relies on behavior contagion by motor imitation, and we showed that it rather relies on emotion discrimination. Together our results support an evolutionary conserved role for oxytocin as a key regulator of basic empathic behaviors across vertebrates.

2020 ◽  
Vol 117 (42) ◽  
pp. 26460-26469 ◽  
Author(s):  
Craig T. Werner ◽  
Swarup Mitra ◽  
Benjamin D. Auerbach ◽  
Zi-Jun Wang ◽  
Jennifer A. Martin ◽  
...  

Relapse vulnerability in substance use disorder is attributed to persistent cue-induced drug seeking that intensifies (or “incubates”) during drug abstinence. Incubated cocaine seeking has been observed in both humans with cocaine use disorder and in preclinical relapse models. This persistent relapse vulnerability is mediated by neuroadaptations in brain regions involved in reward and motivation. The dorsal hippocampus (DH) is involved in context-induced reinstatement of cocaine seeking but the role of the DH in cocaine seeking during prolonged abstinence has not been investigated. Here we found that transforming growth factor-β (TGF-β) superfamily member activin A is increased in the DH on abstinence day (AD) 30 but not AD1 following extended-access cocaine self-administration compared to saline controls. Moreover, activin A does not affect cocaine seeking on AD1 but regulates cocaine seeking on AD30 in a bidirectional manner. Next, we found that activin A regulates phosphorylation of NMDA receptor (NMDAR) subunit GluN2B and that GluN2B-containing NMDARs also regulate expression of cocaine seeking on AD30. Activin A and GluN2B-containing NMDARs have both previously been implicated in hippocampal synaptic plasticity. Therefore, we examined synaptic strength in the DH during prolonged abstinence and observed an increase in moderate long-term potentiation (LTP) in cocaine-treated rats compared to saline controls. Lastly, we examined the role of DH projections to the lateral septum (LS), a brain region implicated in cocaine seeking and found that DH projections to the LS govern cocaine seeking on AD30. Taken together, this study demonstrates a role for the DH in relapse behavior following prolonged abstinence from cocaine self-administration.


Endocrinology ◽  
2001 ◽  
Vol 142 (3) ◽  
pp. 1050-1056 ◽  
Author(s):  
Mary M. Hagan ◽  
Stephen C. Benoit ◽  
Paul A. Rushing ◽  
Laurel M. Pritchard ◽  
Stephen C. Woods ◽  
...  

Abstract Several lines of evidence substantiate the important role of the central nervous system melanocortin 3- and 4-receptor (MC3/4-R) system in the control of food intake and energy balance. Agouti-related peptide (AgRP), an endogenous antagonist of these receptors, produces a robust and unique pattern of increased food intake that lasts up to 7 days after a single injection. Little is known about brain regions that may mediate this powerful effect of AgRP on food intake. To this end we compared c-Fos-like immunoreactivity (c-FLI) in several brain sites of rats injected intracerebroventricularly with 1 nmol AgRP-(83–132) 2 and 24 h before death and compared c-FLI patterns to those induced by another potent orexigenic peptide, neuropeptide Y (NPY). Although both NPY and AgRP induced c-FLI in hypothalamic areas, AgRP also produced increased c-FLI in the accumbens shell and lateral septum. Although NPY elicited no changes in c-FLI 24 h after administration, AgRP induced c-FLI in the accumbens shell, nucleus of the solitary tract, central amygdala, and lateral hypothalamus. These results indicate that an NPY-like hypothalamic circuit mediates the short-term effects of AgRP, but that the unique sustained effect of AgRP on food intake involves a complex circuit of key extrahypothalamic reward and feeding regulatory nuclei.


2012 ◽  
Vol 13 (1) ◽  
Author(s):  
Paloma Fernández Pérez ◽  
Eleanor Hamilton

This  study  contributes  to  developing  our understanding of gender and family business. It draws on studies from the business history and management literatures and provides an interdisciplinary synthesis. It illuminates the role of women and their participation in the entrepreneurial practices of the family and the business. Leadership is introduced as a concept to examine the roles of women and men in family firms, arguing that concepts used  by  historians or economists like ownership and management have served to make women ‘invisible’, at least in western developed economies in which owners and managers have been historically due to legal rules  of  the  game  men,  and  minoritarily women. Finally, it explores gender relations and  the  notion  that  leadership  in  family business  may  take  complex  forms  crafte within constantly changing relationships.


2021 ◽  
Vol 10 (14) ◽  
pp. 3129
Author(s):  
Riyaz A. Kaba ◽  
Aziz Momin ◽  
John Camm

Atrial fibrillation (AF) is a global disease with rapidly rising incidence and prevalence. It is associated with a higher risk of stroke, dementia, cognitive decline, sudden and cardiovascular death, heart failure and impairment in quality of life. The disease is a major burden on the healthcare system. Paroxysmal AF is typically managed with medications or endocardial catheter ablation to good effect. However, a large proportion of patients with AF have persistent or long-standing persistent AF, which are more complex forms of the condition and thus more difficult to treat. This is in part due to the progressive electro-anatomical changes that occur with AF persistence and the spread of arrhythmogenic triggers and substrates outside of the pulmonary veins. The posterior wall of the left atrium is a common site for these changes and has become a target of ablation strategies to treat these more resistant forms of AF. In this review, we discuss the role of the posterior left atrial wall in persistent and long-standing persistent AF, the limitations of current endocardial-focused treatment strategies, and future perspectives on hybrid epicardial–endocardial approaches to posterior wall isolation or ablation.


Author(s):  
Thomas Glonek

AbstractHow life began still eludes science life, the initial progenote in the context presented herein, being a chemical aggregate of primordial inorganic and organic molecules capable of self-replication and evolution into ever increasingly complex forms and functions.Presented is a hypothesis that a mineral scaffold generated by geological processes and containing polymerized phosphate units was present in primordial seas that provided the initiating factor responsible for the sequestration and organization of primordial life’s constituents. Unlike previous hypotheses proposing phosphates as the essential initiating factor, the key phosphate described here is not a polynucleotide or just any condensed phosphate but a large (in the range of at least 1 kilo-phosphate subunits), water soluble, cyclic metaphosphate, which is a closed loop chain of polymerized inorganic phosphate residues containing only phosphate middle groups. The chain forms an intrinsic 4-phosphate helix analogous to its structure in Na Kurrol’s salt, and as with DNA, very large metaphosphates may fold into hairpin structures. Using a Holliday-junction-like scrambling mechanism, also analogous to DNA, rings may be manipulated (increased, decreased, exchanged) easily with little to no need for additional energy, the reaction being essentially an isomerization.A literature review is presented describing findings that support the above hypothesis. Reviewed is condensed phosphate inorganic chemistry including its geological origins, biological occurrence, enzymes and their genetics through eukaryotes, polyphosphate functions, circular polynucleotides and the role of the Holliday junction, previous biogenesis hypotheses, and an Eoarchean Era timeline.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Aileen Patricia Szczepanski ◽  
Lu Wang

AbstractHistone H2AK119 mono-ubiquitination (H2AK119Ub) is a relatively abundant histone modification, mainly catalyzed by the Polycomb Repressive Complex 1 (PRC1) to regulate Polycomb-mediated transcriptional repression of downstream target genes. Consequently, H2AK119Ub can also be dynamically reversed by the BAP1 complex, an evolutionarily conserved multiprotein complex that functions as a general transcriptional activator. In previous studies, it has been reported that the BAP1 complex consists of important biological roles in development, metabolism, and cancer. However, identifying the BAP1 complex’s regulatory mechanisms remains to be elucidated due to its various complex forms and its ability to target non-histone substrates. In this review, we will summarize recent findings that have contributed to the diverse functional role of the BAP1 complex and further discuss the potential in targeting BAP1 for therapeutic use.


2021 ◽  
Vol 10 (7) ◽  
pp. 1475
Author(s):  
Waldemar Kryszkowski ◽  
Tomasz Boczek

Schizophrenia is a severe neuropsychiatric disease with an unknown etiology. The research into the neurobiology of this disease led to several models aimed at explaining the link between perturbations in brain function and the manifestation of psychotic symptoms. The glutamatergic hypothesis postulates that disrupted glutamate neurotransmission may mediate cognitive and psychosocial impairments by affecting the connections between the cortex and the thalamus. In this regard, the greatest attention has been given to ionotropic NMDA receptor hypofunction. However, converging data indicates metabotropic glutamate receptors as crucial for cognitive and psychomotor function. The distribution of these receptors in the brain regions related to schizophrenia and their regulatory role in glutamate release make them promising molecular targets for novel antipsychotics. This article reviews the progress in the research on the role of metabotropic glutamate receptors in schizophrenia etiopathology.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yueran Li ◽  
Jinhua Wu ◽  
Xuming Yu ◽  
Shufang Na ◽  
Ke Li ◽  
...  

CYP2J proteins are present in the neural cells of human and rodent brain regions. The aim of this study was to investigate the role of brain CYP2J in Parkinson’s disease. Rats received right unilateral injection with lipopolysaccharide (LPS) or 6-hydroxydopamine (6-OHDA) in the substantia nigra following transfection with or without the CYP2J3 expression vector. Compared with LPS-treated rats, CYP2J3 transfection significantly decreased apomorphine-induced rotation by 57.3% at day 12 and 47.0% at day 21 after LPS treatment; moreover, CYP2J3 transfection attenuated the accumulation of α-synuclein. Compared with the 6-OHDA group, the number of rotations by rats transfected with CYP2J3 decreased by 59.6% at day 12 and 43.5% at day 21 after 6-OHDA treatment. The loss of dopaminergic neurons and the inhibition of the antioxidative system induced by LPS or 6-OHDA were attenuated following CYP2J3 transfection. The TLR4-MyD88 signaling pathway was involved in the downregulation of brain CYP2J induced by LPS, and CYP2J transfection upregulated the expression of Nrf2 via the inhibition of miR-340 in U251 cells. The data suggest that increased levels of CYP2J in the brain can delay the pathological progression of PD initiated by inflammation or neurotoxins. The alteration of the metabolism of the endogenous substrates (e.g., AA) could affect the risk of neurodegenerative disease.


Sign in / Sign up

Export Citation Format

Share Document