scholarly journals In vivo emergence of high-level resistance during treatment reveals the first identified mechanism of amphotericin B resistance in Candida auris

2021 ◽  
Author(s):  
Jeffrey Michael Rybak ◽  
Katherine S Barker ◽  
Jose F Munoz ◽  
Josie E Parker ◽  
Suhail Ahmad ◽  
...  

Candida auris has emerged as a healthcare-associated and multidrug-resistant fungal pathogen of great clinical concern. While as much as 50% of C. auris clinical isolates are reported to be resistant to amphotericin B, to date, no mechanisms contributing to this resistance have been identified. We report here mutations in the C. auris sterol-methyltransferase gene, ERG6, as the first identified mechanism of amphotericin B resistance in this emerging pathogen and describe the clinical case in which this high-level amphotericin B resistance was acquired in vivo during therapy. Whole genome sequencing revealed the four C. auris isolates obtained from this single patient case to be genetically related and identified a mutation in ERG6 as being associated with amphotericin B resistance. Cas9-mediated genetic manipulations confirmed this mutation alone to confer a >32-fold increase in amphotericin B resistance, and comprehensive sterol profiling revealed an abrogation of ergosterol biosynthesis and a corresponding accumulation of cholesta-type sterols in isolates and strains harboring the clinically derived ERG6 mutation. Together these findings represent the first significant step forward in the understanding of clinical amphotericin B resistance in C. auris.

2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S82-S82
Author(s):  
Hamid Badalii

Abstract Background Blood stream infections due to Candida auris are related to a high mortality rate and treatment failure attributed to resistance to fluconazole, voriconazole, amphotericin B, and caspofungin. Thus, the precise identification of agents and in vitro antifungal susceptibility testing is highly recommended. Novel therapeutic strategies, such as combination therapy, are essential for increasing the efficacy and reducing the toxicity of antifungal agents. Therefore, we investigated the in vitro combination of micafungin plus voriconazole against multidrug-resistant C. auris isolated from cases of candidemia. Methods The in vitro interactions between echinocandins and azoles were determined against ten multidrug-resistant Candida auris strains by using a microdilution checkerboard technique. Results Results revealed that MICs range for voriconazole and micafungin were 0.5–8 and 0.25–8 mg/l, respectively. The checkerboard analysis revealed that the combination of micafungin with voriconazole exhibited synergistic activity against all 10 multidrug-resistant C. auris isolates (FICI range: 0.15–0.5). Overall, no antagonistic effects were observed in this experiments. Conclusion In vitro studies have previously suggested that among azoles isavuconazole and posaconazole are more active drugs against C. auris. In addition, the majority of isolates reported are resistant to fluconazole. Remarkably, unsuccessful treatment of C. auris infections with fluconazole, voriconazole, amphotericin B, caspofungin, and anidulafungin has been already on record. Here in we demonstrates that interaction between micafungin with voriconazole exhibited synergistic activity against multidrug-resistant C. auris isolates. It seems that lower concentrations of drugs cause fewer side-effects and improve the treatment outcomes. However, in vivo studies with suitable animal models of C. auris infection is highly recommended. Disclosures All authors: No reported disclosures.


2010 ◽  
Vol 192 (10) ◽  
pp. 2604-2612 ◽  
Author(s):  
Simon Klaffl ◽  
Bernhard J. Eikmanns

ABSTRACT Soluble, divalent cation-dependent oxaloacetate decarboxylases (ODx) catalyze the irreversible decarboxylation of oxaloacetate to pyruvate and CO2. Although these enzymes have been characterized in different microorganisms, the genes that encode them have not been identified, and their functions have been only poorly analyzed so far. In this study, we purified a soluble ODx from wild-type C. glutamicum about 65-fold and used matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis and peptide mass fingerprinting for identification of the corresponding odx gene. Inactivation and overexpression of odx led to an absence of ODx activity and to a 30-fold increase in ODx specific activity, respectively; these findings unequivocally confirmed that this gene encodes a soluble ODx. Transcriptional analysis of odx indicated that there is a leaderless transcript that is organized in an operon together with a putative S-adenosylmethionine-dependent methyltransferase gene. Biochemical analysis of ODx revealed that the molecular mass of the native enzyme is about 62 ± 1 kDa and that the enzyme is composed of two ∼29-kDa homodimeric subunits and has a Km for oxaloacetate of 1.4 mM and a V max of 201 μmol of oxaloacetate converted per min per mg of protein, resulting in a k cat of 104 s−1. Introduction of plasmid-borne odx into a pyruvate kinase-deficient C. glutamicum strain restored growth of this mutant on acetate, indicating that a high level of ODx activity redirects the carbon flux from oxaloacetate to pyruvate in vivo. Consistently, overexpression of the odx gene in an l-lysine-producing strain of C. glutamicum led to accumulation of less l-lysine. However, inactivation of the odx gene did not improve l-lysine production under the conditions tested.


Author(s):  
Jeffrey M. Rybak ◽  
Katherine S. Barker ◽  
José F. Muñoz ◽  
Josie E. Parker ◽  
Suhail Ahmad ◽  
...  

Author(s):  
Janet Herrada ◽  
Ahmed Gamal ◽  
Lisa Long ◽  
Sonia P. Sanchez ◽  
Thomas S. McCormick ◽  
...  

Antifungal activity of AmBisome against Candida auris was determined in vitro and in vivo. AmBisome showed MIC50 and MIC90 values of 1 and 2 μg/mL, respectively. Unlike conventional amphotericin B, significant in vivo efficacy was observed in the AmBisome 7.5 mg/kg -treated group in survival and reduction of kidney tissue fungal burden compared to the untreated group. Our data shows that AmBisome shows significant antifungal activity against C. auris in vitro as well as in vivo.


2019 ◽  
Vol 63 (12) ◽  
Author(s):  
A. L. Bidaud ◽  
F. Botterel ◽  
A. Chowdhary ◽  
E. Dannaoui

ABSTRACT Candida auris is an emerging, multidrug-resistant pathogen responsible for invasive hospital-acquired infections. Flucytosine is an effective anti-Candida species drug, but which cannot be used as a monotherapy because of the risk of development of resistant mutants during treatment. It is, therefore, noteworthy to test possible combinations with flucytosine that may have a synergistic interaction. In this study, we determined the in vitro interaction between flucytosine and amphotericin B, micafungin, or voriconazole. These combinations have been tested against 15 C. auris isolates. The MIC ranges (geometric mean [Gmean]) of flucytosine, amphotericin B, micafungin, and voriconazole were 0.125 to 1 μg/ml (0.42 μg/ml), 0.25 to 1 μg/ml (0.66 μg/ml), 0.125 to 0.5 μg/ml (0.3 μg/ml), and 0.03 to 4 μg/ml (1.05 μg/ml), respectively. When tested in combination, indifferent interactions were mostly observed with fractional inhibitory concentration index values from 0.5 to 1, 0.31 to 1.01, and 0.5 to 1.06 for the combinations of flucytosine with amphotericin B, micafungin, and voriconazole, respectively. A synergy was observed for the strain CBS 10913 from Japan. No antagonism was observed for any combination. The combination of flucytosine with amphotericin B or micafungin may be relevant for the treatment of C. auris infections.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Katharina Schaufler ◽  
Torsten Semmler ◽  
Lothar H. Wieler ◽  
Darren J. Trott ◽  
Johann Pitout ◽  
...  

ABSTRACT The pathogenic extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli lineage ST648 is increasingly reported from multiple origins. Our study of a large and global ST648 collection from various hosts (87 whole-genome sequences) combining core and accessory genomics with functional analyses and in vivo experiments suggests that ST648 is a nascent and generalist lineage, lacking clear phylogeographic and host association signals. By including large numbers of ST131 (n = 107) and ST10 (n = 96) strains for comparative genomics and phenotypic analysis, we demonstrate that the combination of multidrug resistance and high-level virulence are the hallmarks of ST648, similar to international high-risk clonal lineage ST131. Specifically, our in silico, in vitro, and in vivo results demonstrate that ST648 is well equipped with biofilm-associated features, while ST131 shows sophisticated signatures indicative of adaption to urinary tract infection, potentially conveying individual ecological niche adaptation. In addition, we used a recently developed NFDS (negative frequency-dependent selection) population model suggesting that ST648 will increase significantly in frequency as a cause of bacteremia within the next few years. Also, ESBL plasmids impacting biofilm formation aided in shaping and maintaining ST648 strains to successfully emerge worldwide across different ecologies. Our study contributes to understanding what factors drive the evolution and spread of emerging international high-risk clonal lineages.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S73-S73 ◽  
Author(s):  
Ronen Ben-Ami ◽  
Liat Ashkenazi ◽  
Judith Berman ◽  
Nuphar Korolker ◽  
Anna Novikov

Abstract Background Candida auris is an emerging nosocomial pathogen that is resistant to Fluconazole and variably susceptible to other systemic drug classes. Treatment with echinocandins has been recommended based on MICs in the susceptible range, but supporting in vivo data is lacking. Methods We tested the MIC of C. auris strains (n = 12) to fluconazole, voriconazole, posaconazole. anidulafungin, amphotericin B and flucytosine. Representative C. auris strains from Israel and South Africa, and a reference C. albicans strain were analysed using time–kill curve assays. Fungicidal activity was defined as reduction of ≥3 log from baseline CFU/ml. Response to caspofungin treatment was assessed in BALB/c mice immunosuppressed with cyclophosphamide and inoculated with 7 × 107C. auris cells by tail vein injection. Mice were treated from day +1 to day +7 with caspofungin (IP) at doses of 1 or 5 mg/kg and compared with sham-treated controls. Survival was assessed daily. Kaplan-Meier survival analyses were performed and treatment arms were compared using the log-rank test. Results Drug susceptibility results (MIC50 and MIC90) were: fluconazole, 64 and 128 mg/l; voriconazole, 0.5 and 24 mg/l; posaconazole, 0.5 and 27 mg/l; anidulafungin, 0.03 and 0.06 mg/l; amphotericin B, 2 and 8 mg/l; flucytosine, 0.3 and 1 mg/l. Time–kill curve analyses showed log reduction from baseline CFU concentration of −3.0 to −2.8 for fluconazole (MIC ×1), 5.6–6.1 for amphotericin B (MIC ×4) and −0.4 to −0.9 for caspofungin (MIC ×16), consistent with fungicidal activity of amphotericin B and weak fungistatic activity of caspofungin. In the mouse model, survival rate was similar with sham treatment (33%) and treatment with caspofungin 1 mg/kg/day (44%) and 5 mg/kg/day (22%), P = 0.7. Conclusion Despite generally low MIC, caspofungin has only mild fungistatic activity on C. auris and no effect on survival in a mouse infection model. Amphotericin B has fungicidal activity against C. auris. Disclosures All authors: No reported disclosures.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258465
Author(s):  
Mohamed Hagras ◽  
Nader S. Abutaleb ◽  
Ahmed M. Sayed ◽  
Ehab A. Salama ◽  
Mohamed N. Seleem ◽  
...  

To minimize the intrinsic toxicity of the antibacterial agent hydrazinyloxadiazole 1, the hydrazine moiety was replaced with ethylenediamine (compound 7). This replacement generated a potent antifungal agent with no antibacterial activity. Notably, use of a 1,2-diaminocyclohexane moiety, as a conformationally-restricted isostere for ethylenediamine, potentiated the antifungal activity in both the cis and trans forms of N-(5-(2-([1,1’-biphenyl]-4-yl)-4-methylthiazol-5-yl)-1,3,4-oxadiazol-2-yl)cyclohexane-1,2-diamine (compounds 16 and 17). Both compounds 16 and 17 were void of any antibacterial activity; nonetheless, they showed equipotent antifungal activity in vitro to that of the most potent approved antifungal agent, amphotericin B. The promising antifungal effects of compounds 16 and 17 were maintained when assessed against an additional panel of 26 yeast and mold clinical isolates, including the Candida auris and C. krusei. Furthermore, compound 17 showed superior activity to amphotericin B in vitro against Candida glabrata and Cryptococcus gattii. Additionally, neither compound inhibited the normal human microbiota, and both possessed excellent safety profiles and were 16 times more tolerable than amphotericin B.


2019 ◽  
Vol 6 (12) ◽  
pp. 310-315
Author(s):  
Nergis Aşgın ◽  
Emre Taşkın

Objective: In this study, we aim to determine the frequency of antibiotic resistance and five virulence genes in Enterococcus species and the relationship between antibiotic resistance and virulence genes. Material and Methods: A total of 86 Enterococcus strains isolated from inpatients between 2015 and 2016 were included. Identification and antibiotic susceptibilities of strains were determined using a BD Phoenix fully automated system. The presence of virulence-associated genes (esp, gel E, asa1, hyl, and cyl) were investigated by using PCR method. Results: Of the 86 Enterococcus strains, 53 (61.6%) and 33 (38.4%) were Enterococcus faecium and Enterococcus faecalis, respectively. Vancomycin and high-level gentamicin resistance (HLGR) in E. faecalis strains were 0.6% and 60.6%, respectively. Furthermore, 52 of the 53 E. faecium strains were both vancomycin-resistant and HLGR. The frequency of esp, gel E, asa1, cyl, and hyl was 91.9%, 60.5%, 54.7%, 43%, and 26.7%, respectively.  The asa 1, cyl, and gel E genes were detected at high frequencies in vancomycin-susceptible and non-HLGR strains, whereas hyl gene was detected at high frequencies in vancomycin-resistant and HLGR strains. Conclusion: Virulence genes were more frequent in vancomycin-susceptible and non-HLGR Enterococcus strains than in the resistant strains. Although infections caused by multidrug-resistant strains are difficult to treat, it should be considered that susceptible strains have more virulence genes. This may reduce the in vivo efficacy of drugs and lead to treatment failures. Therefore, in addition to the in vitro susceptibilities of drugs, clinical efficacy should be monitored.


2019 ◽  
Vol 5 (4) ◽  
pp. 103 ◽  
Author(s):  
Mariagrazia Di Luca ◽  
Anna Koliszak ◽  
Svetlana Karbysheva ◽  
Anuradha Chowdhary ◽  
Jacques Meis ◽  
...  

Candida auris has emerged globally as a multidrug-resistant fungal pathogen. Isolates of C. auris are reported to be misidentified as Candida haemulonii. The aim of the study was to compare the heat production profiles of C. auris strains and other Candida spp. and evaluate their antifungal susceptibility using isothermal microcalorimetry. The minimum heat inhibitory concentrations (MHIC) and the minimum biofilm fungicidal concentration (MBFC) were defined as the lowest antimicrobial concentration leading to the lack of heat flow production after 24 h for planktonic cells and 48 h for biofilm-embedded cells. C. auris exhibited a peculiar heat production profile. Thermogenic parameters of C. auris suggested a slower growth rate compared to Candida lusitaniae and a different distinct heat profile compared to that of C. haemulonii species complex strains, although they all belong to the Metschnikowiaceae clade. Amphotericin B MHIC and MBFC were 0.5 µg/mL and ≥8 µg/mL, respectively. C. auris strains were non-susceptible to fluconazole at tested concentrations (MHIC > 128 µg/mL, MBFC > 256 µg/mL). The heat curve represents a fingerprint of C. auris, which distinguished it from other species. Treatment based on amphotericin B represents a potential therapeutic option for C. auris infection.


Sign in / Sign up

Export Citation Format

Share Document