Is there any association between antibiotic resistance and virulence genes in Enterococcus isolates?
Objective: In this study, we aim to determine the frequency of antibiotic resistance and five virulence genes in Enterococcus species and the relationship between antibiotic resistance and virulence genes. Material and Methods: A total of 86 Enterococcus strains isolated from inpatients between 2015 and 2016 were included. Identification and antibiotic susceptibilities of strains were determined using a BD Phoenix fully automated system. The presence of virulence-associated genes (esp, gel E, asa1, hyl, and cyl) were investigated by using PCR method. Results: Of the 86 Enterococcus strains, 53 (61.6%) and 33 (38.4%) were Enterococcus faecium and Enterococcus faecalis, respectively. Vancomycin and high-level gentamicin resistance (HLGR) in E. faecalis strains were 0.6% and 60.6%, respectively. Furthermore, 52 of the 53 E. faecium strains were both vancomycin-resistant and HLGR. The frequency of esp, gel E, asa1, cyl, and hyl was 91.9%, 60.5%, 54.7%, 43%, and 26.7%, respectively. The asa 1, cyl, and gel E genes were detected at high frequencies in vancomycin-susceptible and non-HLGR strains, whereas hyl gene was detected at high frequencies in vancomycin-resistant and HLGR strains. Conclusion: Virulence genes were more frequent in vancomycin-susceptible and non-HLGR Enterococcus strains than in the resistant strains. Although infections caused by multidrug-resistant strains are difficult to treat, it should be considered that susceptible strains have more virulence genes. This may reduce the in vivo efficacy of drugs and lead to treatment failures. Therefore, in addition to the in vitro susceptibilities of drugs, clinical efficacy should be monitored.