scholarly journals Hunting the plant surrender signal activating apoplexy in grapevines after Neofusicoccum parvum infection

2021 ◽  
Author(s):  
Islam Maged Khattab ◽  
Jochen Fischer ◽  
Andrzej Kaźmierczak ◽  
Eckhard Thines ◽  
Peter Nick

Apoplectic breakdown from Grapevines Trunk Diseases (GTDs) has become a serious challenge to viticulture in consequence to drought stress. We hypothesise that fungal aggressiveness is controlled by a chemical communication between host and colonising fungus. We introduce the new concept of a "plant surrender signal" accumulating in host plants under stress and triggering aggressive behaviour of the strain Neofusicoccum parvum (Bt-67) causing Botryosphaeriaceae-related dieback in grapevines. Using a cell-based experimental system (Vitis cells) and bioactivity-guided fractionation, we identify trans-ferulic acid, a monolignol precursor, as "surrender signal". We show that this signal specifically activates secretion of the fungal phytotoxin Fusicoccin A. We show further that this phytotoxin, mediated by 14-3-3 proteins, activates programmed cell death in Vitis cells. We arrive at a model pinpointing the chemical communication driving apoplexy in Botryosphaeriaceae-Vitis interaction and define the channelling of phenylpropanoid pathway from the lignin precursor, trans-ferulic acid to the phytoalexin trans-resveratrol as target for future therapy.

2003 ◽  
Vol 23 (5-6) ◽  
pp. 421-440 ◽  
Author(s):  
Ann-Muriel Steff ◽  
Marylene Fortin ◽  
Fabianne Philippoussis ◽  
Sylvie Lesage ◽  
Chantal Arguin ◽  
...  

2021 ◽  
Vol 22 (6) ◽  
pp. 3224
Author(s):  
Christopher Lotz ◽  
Johannes Herrmann ◽  
Quirin Notz ◽  
Patrick Meybohm ◽  
Franz Kehl

Pharmacologic cardiac conditioning increases the intrinsic resistance against ischemia and reperfusion (I/R) injury. The cardiac conditioning response is mediated via complex signaling networks. These networks have been an intriguing research field for decades, largely advancing our knowledge on cardiac signaling beyond the conditioning response. The centerpieces of this system are the mitochondria, a dynamic organelle, almost acting as a cell within the cell. Mitochondria comprise a plethora of functions at the crossroads of cell death or survival. These include the maintenance of aerobic ATP production and redox signaling, closely entwined with mitochondrial calcium handling and mitochondrial permeability transition. Moreover, mitochondria host pathways of programmed cell death impact the inflammatory response and contain their own mechanisms of fusion and fission (division). These act as quality control mechanisms in cellular ageing, release of pro-apoptotic factors and mitophagy. Furthermore, recently identified mechanisms of mitochondrial regeneration can increase the capacity for oxidative phosphorylation, decrease oxidative stress and might help to beneficially impact myocardial remodeling, as well as invigorate the heart against subsequent ischemic insults. The current review highlights different pathways and unresolved questions surrounding mitochondria in myocardial I/R injury and pharmacological cardiac conditioning.


2003 ◽  
Vol 100 (5) ◽  
pp. 2825-2830 ◽  
Author(s):  
J. Niquet ◽  
R. A. Baldwin ◽  
S. G. Allen ◽  
D. G. Fujikawa ◽  
C. G. Wasterlain

2003 ◽  
Vol 26 (6) ◽  
pp. 794-798 ◽  
Author(s):  
Masaki Hirashima ◽  
Takeshi Naruse ◽  
Hiroaki Maeda ◽  
Chikateru Nozaki ◽  
Yoshiro Saito ◽  
...  

2004 ◽  
Vol 287 (4) ◽  
pp. H1730-H1739 ◽  
Author(s):  
Ron Zohar ◽  
Baoqian Zhu ◽  
Peter Liu ◽  
Jaro Sodek ◽  
C. A. McCulloch

Reperfusion-induced oxidative injury to the myocardium promotes activation and proliferation of cardiac fibroblasts and repair by scar formation. Osteopontin (OPN) is a proinflammatory cytokine that is upregulated after reperfusion. To determine whether OPN enhances fibroblast survival after exposure to oxidants, cardiac fibroblasts from wild-type (WT) or OPN-null (OPN−/−) mice were treated in vitro with H2O2to model reperfusion injury. Within 1 h, membrane permeability to propidium iodide (PI) was increased from 5 to 60% in OPN−/−cells but was increased to only 20% in WT cells. In contrast, after 1–8 h of treatment with H2O2, the percent of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-stained cells was more than twofold higher in WT than OPN−/−cells. Electron microscopy of WT cells treated with H2O2showed chromatin condensation, nuclear fragmentation, and cytoplasmic and nuclear shrinkage, which are consistent with apoptosis. In contrast, H2O2-treated OPN−/−cardiac fibroblasts exhibited cell and nuclear swelling and membrane disruption that are indicative of cell necrosis. Treatment of OPN−/−and WT cells with a cell-permeable caspase-3 inhibitor reduced the percentage of TUNEL staining by more than fourfold in WT cells but decreased staining in OPN−/−cells by ∼30%. Although the percentage of PI-permeable WT cells was reduced threefold, the percent of PI-permeable OPN−/−cells was not altered. Restoration of OPN expression in OPN−/−fibroblasts reduced the percentage of PI-permeable cells but not TUNEL staining after H2O2treatment. Thus H2O2-induced cell death in OPN-deficient cardiac fibroblasts is mediated by a caspase-3-independent, necrotic pathway. We suggest that the increased expression of OPN in the myocardium after reperfusion may promote fibrosis by protecting cardiac fibroblasts from cell death.


2015 ◽  
Vol 28 (1) ◽  
pp. 18-31 ◽  
Author(s):  
Jeremy Duncan ◽  
Niping Wang ◽  
Xiao Zhang ◽  
Shakevia Johnson ◽  
Sharonda Harris ◽  
...  

2003 ◽  
Vol 3 (12) ◽  
pp. 33-46 ◽  
Author(s):  
Andreas Linkermann ◽  
Jing Qian ◽  
Dieter Kabelitz ◽  
Ottmar Janssen

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Ida Perrotta ◽  
Valentina Carito ◽  
Emilio Russo ◽  
Sandro Tripepi ◽  
Saveria Aquila ◽  
...  

The word autophagy broadly refers to the cellular catabolic processes that lead to the removal of damaged cytosolic proteins or cell organelles through lysosomes. Although autophagy is often observed during programmed cell death, it may also serve as a cell survival mechanism. Accumulation of reactive oxygen species within tissues and cells induces various defense mechanisms or programmed cell death. It has been shown that, besides inducing apoptosis, oxidative stress can also induce autophagy. To date, however, the regulation of autophagy in response to oxidative stress remains largely elusive and poorly understood. Therefore, the present study was designed to examine the ratio between oxidative stress and autophagy in macrophages after oxidant exposure (AAPH) and to investigate the ultrastructural localization of beclin-1, a protein essential for autophagy, under basal and stressful conditions. Our data provide evidence that oxidative stress induces autophagy in macrophages. We demonstrate, for the first time by immunoelectron microscopy, the subcellular localization of beclin-1 in autophagic cells.


1994 ◽  
Vol 11 (3) ◽  
pp. 447-454 ◽  
Author(s):  
Benjamin E. Reese ◽  
Janal L. Urich

AbstractNaturally occurring cell death has been hypothesized to sculpt various features of the organization of the mature visual pathways, including the recent proposal that the selective elimination of ganglion cells in the temporal retina shapes the formation of decussation patterns. Through a class-specific interocular competition, ganglion cells in the two temporal hemiretinae are selectively lost to produce the decussation patterns characteristic of each individual cell class (Leventhal et al., 1988). The present study has tested this hypothesis by asking whether the removal of one retina in newborn ferrets, which should disrupt binocular interactions at the level of the terminals, alters the decussation pattern of the alpha cells, a cell class that is entirely decussating in the normal adult ferret. Enucleation on the day of birth was found to increase the uncrossed projection by ≈50%, but not a single uncrossed alpha cell was found in the temporal retina. Either alpha cells never project ipsilaterally during development, or if they do, they cannot be rescued by early enucleation. While naturally occurring cell death plays many roles during development, creating the decussation pattern of the ferreth's alpha cell class via a binocular competition at the level of the targets is unlikely to be one of them.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Anna Kamm ◽  
Paulina Przychodzeń ◽  
Alicja Kuban–Jankowska ◽  
Antonella Marino Gammazza ◽  
Francesco Cappello ◽  
...  

Melanoma is an aggressive type of skin cancer with one of the highest mortality rates. Notably, its incidence in the last few decades has increased faster than any other cancer. Therefore, searching for novel anticancer therapies is of great clinical importance. In the present study, we investigated the anticancer potential of 2-methoxyestradiol, potent chemotherapeutic, in the A375 melanoma cellular model. In order to furthermore evaluate the anticancer efficacy of 2-methoxyestradiol, we have additionally combined the treatment with a naturally occurring polyphenol, ferulic acid. The results were obtained using the melanoma A375 cellular model. In the study, we used MTT assay, flow cytometry, and western blot techniques. Herein, we have evidenced that the molecular mechanism of action of 2-methoxyestradiol and ferulic acid is partly related to the reduction of Hsp60 and Hsp90 levels and the induction of nitric oxide in the A375 melanoma cell model, while no changes were observed in Hsp70 expression after 2-methoxyestradiol and ferulic acid treatment separately or in combination. This is especially important in case of chemoresistance mechanisms because the accumulation of Hsp70 reduces induction of cancer cell death, thus decreasing antitumour efficacy.


Sign in / Sign up

Export Citation Format

Share Document