scholarly journals Identification of Selenoprotein P Fragments as a Cell-Death Inhibitory Factor

2003 ◽  
Vol 26 (6) ◽  
pp. 794-798 ◽  
Author(s):  
Masaki Hirashima ◽  
Takeshi Naruse ◽  
Hiroaki Maeda ◽  
Chikateru Nozaki ◽  
Yoshiro Saito ◽  
...  
2003 ◽  
Vol 23 (5-6) ◽  
pp. 421-440 ◽  
Author(s):  
Ann-Muriel Steff ◽  
Marylene Fortin ◽  
Fabianne Philippoussis ◽  
Sylvie Lesage ◽  
Chantal Arguin ◽  
...  

2021 ◽  
Vol 22 (6) ◽  
pp. 3224
Author(s):  
Christopher Lotz ◽  
Johannes Herrmann ◽  
Quirin Notz ◽  
Patrick Meybohm ◽  
Franz Kehl

Pharmacologic cardiac conditioning increases the intrinsic resistance against ischemia and reperfusion (I/R) injury. The cardiac conditioning response is mediated via complex signaling networks. These networks have been an intriguing research field for decades, largely advancing our knowledge on cardiac signaling beyond the conditioning response. The centerpieces of this system are the mitochondria, a dynamic organelle, almost acting as a cell within the cell. Mitochondria comprise a plethora of functions at the crossroads of cell death or survival. These include the maintenance of aerobic ATP production and redox signaling, closely entwined with mitochondrial calcium handling and mitochondrial permeability transition. Moreover, mitochondria host pathways of programmed cell death impact the inflammatory response and contain their own mechanisms of fusion and fission (division). These act as quality control mechanisms in cellular ageing, release of pro-apoptotic factors and mitophagy. Furthermore, recently identified mechanisms of mitochondrial regeneration can increase the capacity for oxidative phosphorylation, decrease oxidative stress and might help to beneficially impact myocardial remodeling, as well as invigorate the heart against subsequent ischemic insults. The current review highlights different pathways and unresolved questions surrounding mitochondria in myocardial I/R injury and pharmacological cardiac conditioning.


2003 ◽  
Vol 100 (5) ◽  
pp. 2825-2830 ◽  
Author(s):  
J. Niquet ◽  
R. A. Baldwin ◽  
S. G. Allen ◽  
D. G. Fujikawa ◽  
C. G. Wasterlain

2004 ◽  
Vol 287 (4) ◽  
pp. H1730-H1739 ◽  
Author(s):  
Ron Zohar ◽  
Baoqian Zhu ◽  
Peter Liu ◽  
Jaro Sodek ◽  
C. A. McCulloch

Reperfusion-induced oxidative injury to the myocardium promotes activation and proliferation of cardiac fibroblasts and repair by scar formation. Osteopontin (OPN) is a proinflammatory cytokine that is upregulated after reperfusion. To determine whether OPN enhances fibroblast survival after exposure to oxidants, cardiac fibroblasts from wild-type (WT) or OPN-null (OPN−/−) mice were treated in vitro with H2O2to model reperfusion injury. Within 1 h, membrane permeability to propidium iodide (PI) was increased from 5 to 60% in OPN−/−cells but was increased to only 20% in WT cells. In contrast, after 1–8 h of treatment with H2O2, the percent of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-stained cells was more than twofold higher in WT than OPN−/−cells. Electron microscopy of WT cells treated with H2O2showed chromatin condensation, nuclear fragmentation, and cytoplasmic and nuclear shrinkage, which are consistent with apoptosis. In contrast, H2O2-treated OPN−/−cardiac fibroblasts exhibited cell and nuclear swelling and membrane disruption that are indicative of cell necrosis. Treatment of OPN−/−and WT cells with a cell-permeable caspase-3 inhibitor reduced the percentage of TUNEL staining by more than fourfold in WT cells but decreased staining in OPN−/−cells by ∼30%. Although the percentage of PI-permeable WT cells was reduced threefold, the percent of PI-permeable OPN−/−cells was not altered. Restoration of OPN expression in OPN−/−fibroblasts reduced the percentage of PI-permeable cells but not TUNEL staining after H2O2treatment. Thus H2O2-induced cell death in OPN-deficient cardiac fibroblasts is mediated by a caspase-3-independent, necrotic pathway. We suggest that the increased expression of OPN in the myocardium after reperfusion may promote fibrosis by protecting cardiac fibroblasts from cell death.


2015 ◽  
Vol 28 (1) ◽  
pp. 18-31 ◽  
Author(s):  
Jeremy Duncan ◽  
Niping Wang ◽  
Xiao Zhang ◽  
Shakevia Johnson ◽  
Sharonda Harris ◽  
...  

2003 ◽  
Vol 3 (12) ◽  
pp. 33-46 ◽  
Author(s):  
Andreas Linkermann ◽  
Jing Qian ◽  
Dieter Kabelitz ◽  
Ottmar Janssen

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Ida Perrotta ◽  
Valentina Carito ◽  
Emilio Russo ◽  
Sandro Tripepi ◽  
Saveria Aquila ◽  
...  

The word autophagy broadly refers to the cellular catabolic processes that lead to the removal of damaged cytosolic proteins or cell organelles through lysosomes. Although autophagy is often observed during programmed cell death, it may also serve as a cell survival mechanism. Accumulation of reactive oxygen species within tissues and cells induces various defense mechanisms or programmed cell death. It has been shown that, besides inducing apoptosis, oxidative stress can also induce autophagy. To date, however, the regulation of autophagy in response to oxidative stress remains largely elusive and poorly understood. Therefore, the present study was designed to examine the ratio between oxidative stress and autophagy in macrophages after oxidant exposure (AAPH) and to investigate the ultrastructural localization of beclin-1, a protein essential for autophagy, under basal and stressful conditions. Our data provide evidence that oxidative stress induces autophagy in macrophages. We demonstrate, for the first time by immunoelectron microscopy, the subcellular localization of beclin-1 in autophagic cells.


1994 ◽  
Vol 11 (3) ◽  
pp. 447-454 ◽  
Author(s):  
Benjamin E. Reese ◽  
Janal L. Urich

AbstractNaturally occurring cell death has been hypothesized to sculpt various features of the organization of the mature visual pathways, including the recent proposal that the selective elimination of ganglion cells in the temporal retina shapes the formation of decussation patterns. Through a class-specific interocular competition, ganglion cells in the two temporal hemiretinae are selectively lost to produce the decussation patterns characteristic of each individual cell class (Leventhal et al., 1988). The present study has tested this hypothesis by asking whether the removal of one retina in newborn ferrets, which should disrupt binocular interactions at the level of the terminals, alters the decussation pattern of the alpha cells, a cell class that is entirely decussating in the normal adult ferret. Enucleation on the day of birth was found to increase the uncrossed projection by ≈50%, but not a single uncrossed alpha cell was found in the temporal retina. Either alpha cells never project ipsilaterally during development, or if they do, they cannot be rescued by early enucleation. While naturally occurring cell death plays many roles during development, creating the decussation pattern of the ferreth's alpha cell class via a binocular competition at the level of the targets is unlikely to be one of them.


2021 ◽  
Author(s):  
Takumi Kawaue ◽  
Ivan Yow ◽  
Anh Phuong Le ◽  
Yuting Lou ◽  
Mavis Loberas ◽  
...  

The number of cells in tissues is tightly controlled by cell division and cell death, and misregulation of cell numbers could lead to pathological conditions such as cancer. To maintain cell numbers in a tissue, a cell elimination process named programmed cell death or apoptosis, stimulates the proliferation of neighboring cells. This mechanism is called apoptosis-induced compensatory proliferation, which was originally reported more than 40 years ago. While only a limited number of the neigboring cells need to divide to compensate for apoptotic cell loss, the mechanisms that select cells for undergoing division remain an open question. Here we found that the spatial inhomogeneity in mechanotransduction through a growth-promoting transcription co-activator Yes-associated protein (YAP) in the neighboring tissue, accounts for the inhomogeneity of compensatory proliferation. Such inhomogeneous mechanotransduction arises from the combination of the non-uniform distribution of nuclear size, which is inherent in tissues, and the non-uniform pattern of mechanical force applied to the neighboring cells upon apoptosis. Our findings from a mechanical perspective complement the current biochemical understanding of compensatory growth and provide additional insights into cellular functions of how tissue precisely maintains its homeostasis.


Blood ◽  
2013 ◽  
Vol 122 (16) ◽  
pp. 2784-2794 ◽  
Author(s):  
Bryan G. Yipp ◽  
Paul Kubes

Abstract In this review, we examine the evidence that neutrophil extracellular traps (NETs) play a critical role in innate immunity. We summarize how NETs are formed in response to various stimuli and provide evidence that NETosis is not universally a cell death pathway. Here we describe at least 2 different mechanisms by which NETs are formed, including a suicide lytic NETosis and a live cell or vital NETosis. We also evaluate the evidence for NETs in catching and killing pathogens. Finally, we examine how infections are related to the development of autoimmune and vasculitic diseases through unintended but detrimental bystander damage resulting from NET release.


Sign in / Sign up

Export Citation Format

Share Document