scholarly journals Natural variation further increases resilience of sorghum bred for chronically drought–prone environments

2021 ◽  
Author(s):  
Hongxu Dong ◽  
Techale Birhan ◽  
Nezif Abajebel ◽  
Misganu Wakjira ◽  
Tesfaye Mitiku ◽  
...  

Abstract Climate–change–associated shifts in rainfall distribution together with a looming worldwide water crisis make drought resilience of central importance to food security. Even for relatively drought resilient crops such as sorghum, moisture stress is nonetheless one of the major constraints for production. Here, we explore the potential to use natural genetic variation to build on the inherent drought tolerance of an elite cultivar (Teshale) bred for Ethiopian conditions including chronic drought, evaluating a backcross nested-association mapping (BC–NAM) population using 12 diverse founder lines crossed with Teshale under three drought-prone environments in Ethiopia. All twelve populations averaged higher head exsertion and lower leaf senescence than the recurrent parent in the two highest-stress environments, reflecting new drought resilience mechanisms from the donors. A total of 154 QTLs were detected for eight drought responsive traits – the validity of these were supported in that 100 (64.9%) overlapped with QTLs previously detected for the same traits, concentrated in regions previously associated with ′stay-green′ traits as well as the flowering regulator Ma6 and drought resistant gene P5CS2. Allele effects show that some favorable alleles are already present in the Ethiopian cultivar, however the exotic donors offer rich scope for increasing drought resilience. Using model-selected SNPs associated with eight traits in this study and three in a companion study, phenotypic prediction accuracies for grain yield were equivalent to genome-wide SNPs and were significantly better than random SNPs, indicating that these studied traits are predictive of sorghum grain yield. Rich scope for improving drought resilience even in cultivars bred for drought–prone regions, together with phenotypic prediction accuracy for grain yield, provides a foundation to enhance food security in drought-prone areas like the African Sahel.

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 742
Author(s):  
Chiaka Diallo ◽  
H. Frederick W. Rattunde ◽  
Vernon Gracen ◽  
Aboubacar Touré ◽  
Baloua Nebié ◽  
...  

Sorghum, a major crop for income generation and food security in West and Central Africa, is predominantly grown in low-input farming systems with serious soil phosphorus (P) deficiencies. This study (a) estimates genetic parameters needed to design selection protocols that optimize genetic gains for yield under low-phosphorus conditions and (b) examines the utility of introgressed backcross nested association mapping (BCNAM) populations for diversifying Malian breeding materials. A total of 1083 BC1F5 progenies derived from an elite hybrid restorer “Lata-3” and 13 diverse donor accessions were evaluated for yield and agronomic traits under contrasting soil P conditions in Mali in 2013. A subset of 298 progenies were further tested under low-P (LP) and high-P (HP) conditions in 2014 and 2015. Significant genetic variation for grain yield was observed under LP and HP conditions. Selection for grain yield under LP conditions was feasible and more efficient than the indirect selection under HP in all three years of testing. Several of the BCNAM populations exhibited yields under LP conditions that were superior to the elite restorer line used as a recurrent parent. The BCNAM approach appears promising for diversifying the male parent pool with introgression of diverse materials using both adapted Malian breed and unadapted landrace material from distant geographic origins as donors.


2021 ◽  
Vol 12 (1) ◽  
pp. 059-063
Author(s):  
D. Dev Kumar ◽  
◽  
V. Padma ◽  
H. S. Talwar ◽  
Farzana Jabeen ◽  
...  

An experiment was conducted during rabi 2012-13 at research farm of Indian Institute of Millet Research (IIMR), Rajendranagar, Hyderabad, Telengana State, India. The experiment was laid out in a split plot design, replicated thrice, with 10 Sorghum genotypes as main treatment Well-watered (WW) and Water-stress (WS) conditions) to examine the potential of Sorghum genotypes to adapt to the post flowering drought. 10 genotypes are sub-treatments CRS 4, CRS 19, CRS 20, PEC 17, CSV 18, M 35-1, Phule chitra, Phule moulee, EP 57 and CRS 1). Among the four stages viz., 10, 20, 30 and 40 days after flowering (DAF), the GLAR (stay green trait) at 10 DAF had a positive and higher significant correlation with grain yield (r=0.66). So, GLAR at 10 DAF is most appropriate stage to screen for post flowering drought tolerance. Among the yield components, number of grains per panicle, grain weight panicle-1 and harvest index (HI) are significantly and positively correlated with grain yield and therefore it can be ascribed that the genotypes, which partitioned more assimilates into economic parts and in which grain filling is high, recorded more grain yield. The overall yield reduction due to moisture stress during the post flowering drought was 10% and it ranged between 8-12% among the genotypes. This indicates that the genotypes used in the present study are relatively drought tolerant. The genotypes CSV 18 and Phule moulee registered least yield reduction (8%) in grain yield due to post flowering drought followed by PEC 17 and M 35-1 which registered 9% yield reduction. However, the overall grain yield of PEC 17 and M 35-1 was more than CSV 18 and Phule moulee even under moisture stress conditions.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 539
Author(s):  
Rajinder Pal ◽  
Gulshan Mahajan ◽  
Virender Sardana ◽  
Bavita Asthir ◽  
Bhagirath Singh Chauhan

Plant hormones influence various physiological processes during the growth and development of plants, but their critical roles in influencing yield and antioxidant activities in dry-seeded rice (DSR) have not been adequately explored. This study aims to analyze the performance and antioxidant activity of contrasting genotypes of DSR in response to soil moisture regimes and foliar-applied hormones. The study comprised sixteen treatments that were evaluated under field conditions as per split-plot design in three replications. Treatments comprised combinations of two soil moisture tension regimes (10 kPa and 20 kPa) and two genotypes (PR-111, non-stay-green type and PR-123, stay-green type) applied to the main plots and foliar application of three hormones (gibberellic acid (GA3) 40 mg kg−1, abscisic acid (ABA) 20 mg kg−1, and cytokinin (CK) 40 mg kg−1)) and a control (unsprayed) to subplots. The non-stay-green genotype (PR-111) resulted in 34.6% more grain yield (6.48 t ha−1) than the stay-green genotype (PR-123) at the lower soil moisture tension regime (SMTR) (10 kPa) due to the increased number of filled grains per panicle and improvement in harvest index (HI). At the higher SMTR (20 kPa), the stay-green genotype (PR-123) produced 26.4% more grain yield (5.21 t ha−1) than non-stay green genotype (4.12 t ha−1) and showed enhanced superoxide dismutase (SOD) and peroxide dismutase (POD) activity that may have contributed in maintaining sink size through improved chlorophyll content. Grain yield (6.35 t ha−1) with foliar-applied GA3 (40 mg kg−1) at SMTR of 10 kPa was higher by 12.2% and 24.0% than with foliar-applied ABA (20 mg kg−1) and unsprayed treatments, respectively. Irrigation application at SMTR of 20 kPa and foliar application of ABA gave 24.1% higher grain yield (5.15 t ha−1) than the unsprayed treatment, but it was similar to foliar-applied GA3 and CK. This study implied that the stay-green genotype (PR-123) was more suitable under moisture stress conditions (20 kPa) in DSR, as it maintained sink size even under moisture stress conditions by improving dry matter translocation and enhancing SOD and POD activity. The study suggests the need to find out the endogenous level of these plant hormones in rice genotypes under a range of water regimes to develop high yielding and water use efficient genotypes of DSR.


Helia ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Harshavardan J. Hilli ◽  
Shobha U. Immadi

Abstract The experimental material for the present study comprised of 28 inbred lines (including two checks) which were developed by mutation and hybridization among the lines from AICRP trials MARS, UAS, Dharwad and on the basis of SPAD readings and stay green nature, they were considered as drought tolerant lines. These lines were used for the present experiment and were evaluated under both normal and moisture stress condition in rain out shelter to study their root characteristics. Among 28 inbreds evaluated, eight inbred lines i.e. DSR-13, DSR-19, DSR-23, DSR-24, DSR-37, DSR-66, DSR-107 and DSR-132 were identified as drought tolerant nature which exhibited least reduction in their yield under moisture stress condition. Simultaneously hybridization programme was also initiated during summer 2018 using these 28 inbred lines as testers (males) and 5 CMS lines as female lines in Line × Tester fashion. Among 140 hybrids developed, only 40 F1 hybrid combinations were further analyzed for heterosis and combining ability studies along with four checks RHA 6D-1, RHA 95C-1, KBSH-53 and Cauvery Champ. Most of the hybrid combinations showed significant negative heterosis for flowering indicating earliness, and also all the combinations showed a positive heterosis for plant height indicating tallness dominant over dwarf checks. The combinations CMS 7-1-1 A × DSR-37 (624 kg/ha), CMS-853A × DSR-19 (624 kg/ha), and CMS-853A × DSR-23 (619 kg/ha) exhibited significant maximum heterosis for seed yield (kg ha−1) over the checks KBSH-53 (496.50 kg/ha) and Cauvery Champ (486.50 kg/ha) showing maximum seed yield per hectare.


2021 ◽  
Vol 9 (2) ◽  
pp. 216-224
Author(s):  
Rahel Kahsay ◽  
Yeshambelm Ekuriaw ◽  
Bimrew Asmare

An experiment was conducted to determine effects of inter-cropping lablab (Lablab purpureus) with 3 selected early-maturing sorghum (Sorghum bicolor) varieties (Teshale, Girana-1 and Misikir) on plant morphology, sorghum grain and forage yield and quality plus yield and quality of lablab forage, and to assess farmers’ perceptions of the crops in Kalu District, South Wollo, Ethiopia. Seven treatments, namely: T1 - sole lablab (SL); T2 - Teshale + lablab (TL); T3 - Girana-1 + lablab (GL); T4 - Misikir + lablab (ML); T5 - sole Teshale (ST); T6 - sole Girana-1 (SG); and T7 - sole Misikir (SM), were used with 3 replications in a randomized complete block design. The data collected from sorghum varieties were: plant height, number of leaves per plant, leaf area, dry biomass yield and grain yield; and for lablab was: plant height, number of leaves per plant, leaf area, number of branches per plant, number of nodules per plant and dry biomass yield. Grain yield was determined on sorghum at maturity, while lablab was harvested at 50% flowering. Inter-cropped Girana-1 produced yields of both grain and stover and lablab forage similar to those for pure stands of the 2 crops, while inter-cropping of Teshale and Misikir with lablab reduced height, grain and stover yields of sorghum and yields of lablab forage (P<0.05). However, crude protein concentration in sorghum stover was enhanced when grown as an inter-crop with lablab (P<0.05). Land equivalent ratios for inter-crop treatments were 54‒87% higher than those for pure stands. Farmers readily identified the combination Girana-1 + lablab as superior to the other associations. While farmers can improve productivity of their farms by inter-cropping these sorghum varieties, preferably Girana-1, with lablab, more studies should be conducted to determine benefits from sowing other legumes with sorghum. Any improvements in soil N levels from planting the legumes should be quantified.


2000 ◽  
Vol 36 (2) ◽  
pp. 205-221 ◽  
Author(s):  
T. J. REGO ◽  
V. NAGESWARA RAO

In southern and central India, farmers crop Vertisols only in the post-rainy season, to avoid land management problems in the rainy season. In 1983 ICRISAT established a long-term trial seeking to intensify cropping. The trial included intercrops, sequential crops and appropriate Vertisol management technology to allow consecutive rainy-season and post-rainy season crops to be grown. Benefits provided by legumes to succeeding rainy-season sorghum (Sorghum bicolor) were analysed in relation to a non-legume system of sorghum + safflower (Carthamus tinctorius). Rainy-season sorghum grain yield production was sustained at about 2.7 t ha−1 over 12 years within a continuous sorghum–pigeonpea (Cajanus cajan) intercrop system. With a cowpea–pigeonpea intercrop system, succeeding sorghum benefitted each year by about 40 kg N ha−1 (fertilizer nitrogen (N) equivalent). Without N fertilizer application the sorghum grain yield was around 3.3 t ha−1. Legume benefits were less marked in the chickpea (Cicer arietinum)-based rotation than in the pigeonpea system, in which a 12-year build up of soil total N (about 125 μg g−1) was observed. Although sorghum benefitted from this system, pigeonpea yields declined over time due to soil-borne fungi and nematodes. Wider rotations of crops with pigeonpea may help to overcome these problems, while sustaining sorghum production.


2016 ◽  
Vol 5 (4) ◽  
pp. 71
Author(s):  
Daniel L Mutisya ◽  
Canute PM Khamala ◽  
Jacob JO Konyango ◽  
Clement K Kamau ◽  
Lawrence K Matolo

<p class="sar-body"><span lang="EN-US">Various environmental factors influence yield of sorghum grain, <em>Sorghum bicolor</em> (L) in Sub-Sahara Africa. Various production conditions of rainfall amount, temperature regimes, soil fertility levels and bollworm <em>Helicoverpa armigera</em> density at specific sorghum grain stage were evaluated for effect to sorghum grain yield. High rainfall amount, high temperature and soil fertility levels were positively correlated to sorghum grain yield at three test sites at Ithookwe, Katumani and Kampi of eastern Kenya. The warmest Kampi site achieved the highest seed viability on germination test at 43, 87 and 99% for grain stage of light-green, cream-dough and hard dough, respectively. High <em>H. armigera</em> density was inversely correlated to grain yield. Comparatively, yield loss of &lt; 10% was observed when grain was at early soft dough and &gt; 35% as the grain ripened to early hard dough stage. Thus initial <em>H. armigera</em> damage occurred at late soft dough stage and increased exponentially as the grain ripened to early hard dough stage. The right time to spray against <em>H. armigera</em> was determined as at soft dough stage of sorghum grain to prevent economic damage of the crop. Thus fertility level, rainfall amount and time of bollworm pest attack were deemed worth considerations towards sustainable yield of sorghum. </span></p>


2011 ◽  
Vol 3 (4) ◽  
pp. 129-133
Author(s):  
Supriyo CHAKRABORTY ◽  
Sheng-Chu WANG ◽  
Zhao-Bang ZENG

Polygenes (QTLs) for grain yield were mapped on rice chromosomes under two moisture stress environments by multiple interval mapping (MIM) method in a double haploid (DH) population derived from a cross between a deep-rooted japonica and a shallow-rooted indica genotype. In environment 1 (E1), the MIM detected a total of six QTLs for grain yield on chromosomes-two QTLs on chromosome 1 and four QTLs on chromosome 5 along with one additive x additive epistasis. But in environment 2 (E2), the MIM detected five QTLs for grain yield on two chromosomes-three QTLs on chromosome 1 and two QTLs on chromosome 7. One common QTL on chromosome 1 flanked by the markers RG109-ME1014 was detected in both the environments, although the other detected QTLs differed between environments. The magnitude of QTL effect, percent genetic variance and percent phenotypic variance explained by each QTL was also estimated in both environments. The common QTL explained about 26.05 and 13.93% of genetic variance in E1 and E2, respectively. Estimated broad sense heritability for grain yield was 48.01 in E1 and 25.27% in E2.


1964 ◽  
Vol 15 (5) ◽  
pp. 729 ◽  
Author(s):  
D Aspinall ◽  
PB Nicholls ◽  
LH May

The effects of soil moisture stress on tillering, stem elongation, and grain yield of barley (cv. Prior) have been studied by subjecting the plants to periods of stress at different stages of development. Soil moisture stress treatments consisted of repeated short cycles of stress, single short cycles (both in large pots), or single long cycles (in large lysimeters). The data collected support the contention that the organ which is growing most rapidly at the time of a stress is the one most affected. Grain numbers per ear were seriously affected by stress occurring prior to anthesis, an effect probably associated with the process of spikelet initiation and, later, with the formation of the gametes. Grain size, on the other hand, was reduced more by stress at anthesis and shortly after. Elongation of the internodes was reduced mostly by stress at or just before earing, and was less seriously affected by earlier or later stress. Tillering, although being suppressed during a drought cycle, was actually stimulated upon rewatering. The effect was greater the earlier the period of stress, and was probably related to nutrient uptake and distribution within the plant.


Sign in / Sign up

Export Citation Format

Share Document