scholarly journals Circadian programming of the ellipsoid body sleep homeostat in Drosophila

2021 ◽  
Author(s):  
Tomas Andreani ◽  
Clark Rosensweig ◽  
Shiju Sisobhan ◽  
Emmanuel Ogunlana ◽  
Bill Kath ◽  
...  

Homeostatic and circadian processes collaborate to appropriately time and consolidate sleep and wake. To understand how these processes are integrated, we scheduled brief sleep deprivation at different times of day in Drosophila and find elevated morning rebound compared to evening. These effects depend on discrete morning and evening clock neurons, independent of their roles in circadian locomotor activity. In the R5 ellipsoid body sleep homeostat, we identified elevated morning expression of activity dependent and presynaptic gene expression as well as the presynaptic protein BRUCHPILOT consistent with regulation by clock circuits. These neurons also display elevated calcium levels in response to sleep loss in the morning, but not the evening consistent with the observed time-dependent sleep rebound. These studies reveal the circuit and molecular mechanisms by which discrete circadian clock neurons program a homeostatic sleep center.

2021 ◽  
Vol 118 (47) ◽  
pp. e2111183118
Author(s):  
Jessica E. Schwarz ◽  
Anna N. King ◽  
Cynthia T. Hsu ◽  
Annika F. Barber ◽  
Amita Sehgal

Sleep is controlled by homeostatic mechanisms, which drive sleep after wakefulness, and a circadian clock, which confers the 24-h rhythm of sleep. These processes interact with each other to control the timing of sleep in a daily cycle as well as following sleep deprivation. However, the mechanisms by which they interact are poorly understood. We show here that hugin+ neurons, previously identified as neurons that function downstream of the clock to regulate rhythms of locomotor activity, are also targets of the sleep homeostat. Sleep deprivation decreases activity of hugin+ neurons, likely to suppress circadian-driven activity during recovery sleep, and ablation of hugin+ neurons promotes sleep increases generated by activation of the homeostatic sleep locus, the dorsal fan-shaped body (dFB). Also, mutations in peptides produced by the hugin+ locus increase recovery sleep following deprivation. Transsynaptic mapping reveals that hugin+ neurons feed back onto central clock neurons, which also show decreased activity upon sleep loss, in a Hugin peptide–dependent fashion. We propose that hugin+ neurons integrate circadian and sleep signals to modulate circadian circuitry and regulate the timing of sleep.


2017 ◽  
Vol 114 (33) ◽  
pp. E7018-E7027 ◽  
Author(s):  
Ruijiao Xin ◽  
Ling Zhu ◽  
Patrice A. Salomé ◽  
Estefania Mancini ◽  
Carine M. Marshall ◽  
...  

Light signals regulate plant growth and development by controlling a plethora of gene expression changes. Posttranscriptional regulation, especially pre-mRNA processing, is a key modulator of gene expression; however, the molecular mechanisms linking pre-mRNA processing and light signaling are not well understood. Here we report a protein related to the human splicing factor 45 (SPF45) named splicing factor for phytochrome signaling (SFPS), which directly interacts with the photoreceptor phytochrome B (phyB). In response to light, SFPS-RFP (red fluorescent protein) colocalizes with phyB-GFP in photobodies. sfps loss-of-function plants are hyposensitive to red, far-red, and blue light, and flower precociously. SFPS colocalizes with U2 small nuclear ribonucleoprotein-associated factors including U2AF65B, U2A′, and U2AF35A in nuclear speckles, suggesting SFPS might be involved in the 3′ splice site determination. SFPS regulates pre-mRNA splicing of a large number of genes, of which many are involved in regulating light signaling, photosynthesis, and the circadian clock under both dark and light conditions. In vivo RNA immunoprecipitation (RIP) assays revealed that SFPS associates with EARLY FLOWERING 3 (ELF3) mRNA, a critical link between light signaling and the circadian clock. Moreover, PHYTOCHROME INTERACTING FACTORS (PIFs) transcription factor genes act downstream of SFPS, as the quadruple pif mutant pifq suppresses defects of sfps mutants. Taken together, these data strongly suggest SFPS modulates light-regulated developmental processes by controlling pre-mRNA splicing of light signaling and circadian clock genes.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shin Hayase ◽  
Chengru Shao ◽  
Masahiko Kobayashi ◽  
Chihiro Mori ◽  
Wan-chun Liu ◽  
...  

AbstractSongbirds are one of the few animal taxa that possess vocal learning abilities. Different species of songbirds exhibit species-specific learning programs during song acquisition. Songbirds with open-ended vocal learning capacity, such as the canary, modify their songs during adulthood. Nevertheless, the neural molecular mechanisms underlying open-ended vocal learning are not fully understood. We investigated the singing-driven expression of neural activity-dependent genes (Arc, Egr1, c-fos, Nr4a1, Sik1, Dusp6, and Gadd45β) in the canary to examine a potential relationship between the gene expression level and the degree of seasonal vocal plasticity at different ages. The expression of these genes was differently regulated throughout the critical period of vocal learning in the zebra finch, a closed-ended song learner. In the canary, the neural activity-dependent genes were induced by singing in the song nuclei throughout the year. However, in the vocal motor nucleus, the robust nucleus of the arcopallium (RA), all genes were regulated with a higher induction rate by singing in the fall than in the spring. The singing-driven expression of these genes showed a similar induction rate in the fall between the first year juvenile and the second year adult canaries, suggesting a seasonal, not age-dependent, regulation of the neural activity-dependent genes. By measuring seasonal vocal plasticity and singing-driven gene expression, we found that in RA, the induction intensity of the neural activity-dependent genes was correlated with the state of vocal plasticity. These results demonstrate a correlation between vocal plasticity and the singing-driven expression of neural activity-dependent genes in RA through song development, regardless of whether a songbird species possesses an open- or closed-ended vocal learning capacity.


2006 ◽  
Vol 34 (4) ◽  
pp. 600-604 ◽  
Author(s):  
J. Soulé ◽  
E. Messaoudi ◽  
C.R. Bramham

Interest in BDNF (brain-derived neurotrophic factor) as an activity-dependent modulator of neuronal structure and function in the adult brain has intensified in recent years. Localization of BDNF and its receptor tyrosine kinase TrkB (tropomyosin receptor kinase B) to glutamate synapses makes this system attractive as a dynamic, activity-dependent regulator of excitatory transmission and synaptic plasticity in the adult brain. Development of stable LTP (long-term potentiation) in response to high-frequency stimulation requires new gene expression and protein synthesis, a process referred to as synaptic consolidation. Several lines of evidence have implicated endogenous BDNF–TrkB signalling in synaptic consolidation. This mini-review emphasizes new insights into the molecular mechanisms underlying this process. The immediate early gene Arc (activity-regulated cytoskeleton-associated protein) is strongly induced and transported to dendritic processes after LTP induction in the dentate gyrus in live rats. Recent work suggests that sustained synthesis of Arc during a surprisingly protracted time-window is required for hyperphosphorylation of actin-depolymerizing factor/cofilin and local expansion of the actin cytoskeleton in vivo. Moreover, this process of Arc-dependent synaptic consolidation is activated in response to brief infusion of BDNF. Microarray expression profiling has also revealed a panel of BDNF-regulated genes that may co-operate with Arc during LTP maintenance. In addition to regulating gene expression, BDNF signalling modulates the fine localization and biochemical activation of the translation machinery. By modulating the spatial and temporal translation of newly induced (Arc) and constitutively expressed mRNA in neuronal dendrites, BDNF may effectively control the window of synaptic consolidation. These findings have implications for mechanisms of memory storage and mood control.


2020 ◽  
Vol 21 (5) ◽  
pp. 1592
Author(s):  
Han Kyoung Choe ◽  
Jun Cho

Activity-dependent regulation of gene expression is critical in experience-mediated changes in the brain. Although less appreciated than transcriptional control, translational control is a crucial regulatory step of activity-mediated gene expression in physiological and pathological conditions. In the first part of this review, we overview evidence demonstrating the importance of translational controls under the context of synaptic plasticity as well as learning and memory. Then, molecular mechanisms underlying the translational control, including post-translational modifications of translation factors, mTOR signaling pathway, and local translation, are explored. We also summarize how activity-dependent translational regulation is associated with neurodevelopmental and psychiatric disorders, such as autism spectrum disorder and depression. In the second part, we highlight how recent application of high-throughput sequencing techniques has added insight into genome-wide studies on translational regulation of neuronal genes. Sequencing-based strategies to identify molecular signatures of the active neuronal population responding to a specific stimulus are discussed. Overall, this review aims to highlight the implication of translational control for neuronal gene regulation and functions of the brain and to suggest prospects provided by the leading-edge techniques to study yet-unappreciated translational regulation in the nervous system.


2015 ◽  
Vol 100 (9) ◽  
pp. E1255-E1261 ◽  
Author(s):  
Jonathan Cedernaes ◽  
Megan E. Osler ◽  
Sarah Voisin ◽  
Jan-Erik Broman ◽  
Heike Vogel ◽  
...  

Context: Shift workers are at increased risk of metabolic morbidities. Clock genes are known to regulate metabolic processes in peripheral tissues, eg, glucose oxidation. Objective: This study aimed to investigate how clock genes are affected at the epigenetic and transcriptional level in peripheral human tissues following acute total sleep deprivation (TSD), mimicking shift work with extended wakefulness. Intervention: In a randomized, two-period, two-condition, crossover clinical study, 15 healthy men underwent two experimental sessions: x sleep (2230–0700 h) and overnight wakefulness. On the subsequent morning, serum cortisol was measured, followed by skeletal muscle and subcutaneous adipose tissue biopsies for DNA methylation and gene expression analyses of core clock genes (BMAL1, CLOCK, CRY1, PER1). Finally, baseline and 2-h post-oral glucose load plasma glucose concentrations were determined. Main Outcome Measures: In adipose tissue, acute sleep deprivation vs sleep increased methylation in the promoter of CRY1 (+4%; P = .026) and in two promoter-interacting enhancer regions of PER1 (+15%; P = .036; +9%; P = .026). In skeletal muscle, TSD vs sleep decreased gene expression of BMAL1 (−18%; P = .033) and CRY1 (−22%; P = .047). Concentrations of serum cortisol, which can reset peripheral tissue clocks, were decreased (2449 ± 932 vs 3178 ± 723 nmol/L; P = .039), whereas postprandial plasma glucose concentrations were elevated after TSD (7.77 ± 1.63 vs 6.59 ± 1.32 mmol/L; P = .011). Conclusions: Our findings demonstrate that a single night of wakefulness can alter the epigenetic and transcriptional profile of core circadian clock genes in key metabolic tissues. Tissue-specific clock alterations could explain why shift work may disrupt metabolic integrity as observed herein.


2019 ◽  
Author(s):  
Catarina S. Silva ◽  
Aditya Nayak ◽  
Xuelei Lai ◽  
Veronique Hugouvieux ◽  
Jae-Hoon Jung ◽  
...  

AbstractThe Evening Complex (EC), composed of the DNA-binding protein LUX ARRHYTHMO (LUX) and two additional proteins, EARLY FLOWERING 3 (ELF3) and ELF4, is a transcriptional repressor complex and a core component of the plant circadian clock. In addition to maintaining oscillations in clock gene expression, the EC also participates in temperature and light entrainment and regulates important clock output genes such asPHYTOCHROME INTERACTING FACTOR 4(PIF4), a key transcription factor involved in temperature dependent plant growth. These properties make the EC an attractive target for altering plant development through targeted mutations to the complex. However, the molecular basis for EC function was not known. Here we show that binding of the EC requires all three proteins and that ELF3 decreases the ability of LUX to bind DNA whereas the presence of ELF4 restores interaction with DNA. To be able to manipulate this complex, we solved the structure of the DNA-binding domain of LUX bound to DNA. Using structure-based design, a LUX variant was constructed that showed decreasedin vitrobinding affinity but retained specificity for its cognate sequences. This designed LUX allele modulates hypocotyl elongation and flowering. These results demonstrate that modifying the DNA-binding affinity of LUX can be used to titrate the repressive activity of the entire EC, tuning growth and development in a predictable manner.Significance StatementCircadian gene expression oscillates over a 24 hr. period and regulates many genes critical for growth and development. In plants, the Evening Complex (EC), a three-protein repressive complex made up of LUX ARRYTHMO, EARLY FLOWERING 3 and EARLY FLOWERING 4, acts as a key component of the circadian clock and is a regulator of thermomorphogenic growth. However, the molecular mechanisms of complex formation and DNA-binding have not been identified. Here we determine the roles of each protein in the complex and present the structure of the LUX DNA-binding domain in complex with DNA. Based on these data, we used structure-based protein engineering to produce a version of the EC with alteredin vitroandin vivoactivity. These results demonstrate that the EC can be modified to alter plant growth and development at different temperatures in a predictable manner.


2015 ◽  
Vol 112 (7) ◽  
pp. 2198-2203 ◽  
Author(s):  
Javier Espinosa ◽  
Joseph S. Boyd ◽  
Raquel Cantos ◽  
Paloma Salinas ◽  
Susan S. Golden ◽  
...  

The response regulator RpaB (regulator of phycobilisome associated B), part of an essential two-component system conserved in cyanobacteria that responds to multiple environmental signals, has recently been implicated in the control of cell dimensions and of circadian rhythms of gene expression in the model cyanobacteriumSynechococcus elongatusPCC 7942. However, little is known of the molecular mechanisms that underlie RpaB functions. In this study we show that the regulation of phenotypes by RpaB is intimately connected with the activity of RpaA (regulator of phycobilisome associated A), the master regulator of circadian transcription patterns. RpaB affects RpaA activity both through control of gene expression, a function requiring an intact effector domain, and via altering RpaA phosphorylation, a function mediated through the N-terminal receiver domain of RpaB. Thus, both phosphorylation cross-talk and coregulation of target genes play a role in the genetic interactions between the RpaA and RpaB pathways. In addition, RpaB∼P levels appear critical for survival under light:dark cycles, conditions in which RpaB phosphorylation is environmentally driven independent of the circadian clock. We propose that the complex regulatory interactions between the essential and environmentally sensitive NblS-RpaB system and the SasA-RpaA clock output system integrate relevant extra- and intracellular signals to the circadian clock.


Sign in / Sign up

Export Citation Format

Share Document