scholarly journals Identifying Lethal Dependencies with HUGE Predictive Power from Large-Scale Functional Genomic Screens

2021 ◽  
Author(s):  
Fernando Carazo ◽  
Edurne San Jose Eneriz ◽  
Marian Gimeno ◽  
Leire Garate ◽  
Estibaliz Miranda ◽  
...  

Recent functional genomic screens -such as CRISPR-Cas9 or RNAi screening- have fostered a new wave of targeted treatments based on the concept of synthetic lethality. These approaches identified LEthal Dependencies (LEDs) by estimating the effect of genetic events on cell viability. The multiple-hypothesis problem related to a large number of gene knockouts limits the statistical power of these studies. Here, we show that predictions of LEDs from functional screens can be dramatically improved by incorporating the <HUb effect in Genetic Essentiality> (HUGE) of gene alterations. We analyze three recent genome-wide loss-of-function screens -Project Score, CERES score, and DEMETER score- identifying LEDs with 75 times larger statistical power than using state-of-the-art methods. HUGE shows an increased enrichment in a recent harmonized knowledgebase of clinical interpretations of somatic genomic variants in cancer (with an AUROC up to 0.87). Our approach is effective even in tumors with large genetic heterogeneity such as acute myeloid leukemia, where we identified LEDs not recalled by previous pipelines, including FLT3-mutant genotypes sensitive to FLT3 inhibitors. Interestingly, in-vitro validations confirm lethal dependencies of either NRAS or PTPN11 depending on the NRAS mutational status. HUGE will hopefully help discover novel genetic dependencies amenable for precision-targeted therapies in cancer.

Author(s):  
Doris Škorić-Milosavljević ◽  
Najim Lahrouchi ◽  
Fernanda M. Bosada ◽  
Gregor Dombrowsky ◽  
Simon G. Williams ◽  
...  

Abstract Purpose Rare genetic variants in KDR, encoding the vascular endothelial growth factor receptor 2 (VEGFR2), have been reported in patients with tetralogy of Fallot (TOF). However, their role in disease causality and pathogenesis remains unclear. Methods We conducted exome sequencing in a familial case of TOF and large-scale genetic studies, including burden testing, in >1,500 patients with TOF. We studied gene-targeted mice and conducted cell-based assays to explore the role of KDR genetic variation in the etiology of TOF. Results Exome sequencing in a family with two siblings affected by TOF revealed biallelic missense variants in KDR. Studies in knock-in mice and in HEK 293T cells identified embryonic lethality for one variant when occurring in the homozygous state, and a significantly reduced VEGFR2 phosphorylation for both variants. Rare variant burden analysis conducted in a set of 1,569 patients of European descent with TOF identified a 46-fold enrichment of protein-truncating variants (PTVs) in TOF cases compared to controls (P = 7 × 10-11). Conclusion Rare KDR variants, in particular PTVs, strongly associate with TOF, likely in the setting of different inheritance patterns. Supported by genetic and in vivo and in vitro functional analysis, we propose loss-of-function of VEGFR2 as one of the mechanisms involved in the pathogenesis of TOF.


2021 ◽  
Author(s):  
Poppy Channa Sakti Sephton-Clark ◽  
Jennifer Tenor ◽  
Dena Toffaletti ◽  
Nancy Meyers ◽  
Charles Giamberardino ◽  
...  

Cryptococcus neoformans is the causative agent of cryptococcosis, a disease with poor patient outcomes, accounting for approximately 180,000 deaths each year. Patient outcomes may be impacted by the underlying genetics of the infecting isolate, however, our current understanding of how genetic diversity contributes to clinical outcomes is limited. Here, we leverage clinical, in vitro growth and genomic data for 284 C. neoformans isolates to identify clinically relevant pathogen variants within a population of clinical isolates from patients with HIV-associated cryptococcosis in Malawi. Through a genome-wide association study (GWAS) approach, we identify variants associated with fungal burden and growth rate. We also find both small and large-scale variation, including aneuploidy, associated with alternate growth phenotypes, which may impact the course of infection. Genes impacted by these variants are involved in transcriptional regulation, signal transduction, glycolysis, sugar transport, and glycosylation. When combined with clinical data, we show that growth within the CNS is reliant upon glycolysis in an animal model, and likely impacts patient mortality, as CNS burden modulates patient outcome. Additionally, we find genes with roles in sugar transport are under selection in the majority of these clinical isolates. Further, we demonstrate that two hypothetical proteins identified by GWAS impact virulence in animal models. Our approach illustrates links between genetic variation and clinically relevant phenotypes, shedding light on survival mechanisms within the CNS and pathways involved in this persistence.


2019 ◽  
Author(s):  
Madison L. Doolittle ◽  
Gina M Calabrese ◽  
Larry D. Mesner ◽  
Dana A. Godfrey ◽  
Robert D. Maynard ◽  
...  

ABSTRACTOsteoporosis is a genetic disease characterized by progressive reductions in bone mineral density (BMD) leading to an increased risk of fracture. Over the last decade, genome-wide association studies (GWASs) have identified over 1000 associations for BMD. However, as a phenotype BMD is challenging as bone is a multicellular tissue affected by both local and systemic physiology. Here, we focused on a single component of BMD, osteoblast-mediated bone formation in mice, and identified associations influencing osteoblast activity on mouse Chromosomes (Chrs) 1, 4, and 17. The locus on Chr. 4 was in an intergenic region between Wnt4 and Zbtb40, homologous to a locus for BMD in humans. We tested both Wnt4 and Zbtb40 for a role in osteoblast activity and BMD. Knockdown of Zbtb40, but not Wnt4, in osteoblasts drastically reduced mineralization. Additionally, loss-of-function mouse models for both genes exhibited reduced BMD. Our results highlight that investigating the genetic basis of in vitro osteoblast mineralization can be used to identify genes impacting bone formation and BMD.


2021 ◽  
Author(s):  
Runqing Yang ◽  
Yuxin Song ◽  
Li Jiang ◽  
Zhiyu Hao ◽  
Runqing Yang

Abstract Complex computation and approximate solution hinder the application of generalized linear mixed models (GLMM) into genome-wide association studies. We extended GRAMMAR to handle binary diseases by considering genomic breeding values (GBVs) estimated in advance as a known predictor in genomic logit regression, and then controlled polygenic effects by regulating downward genomic heritability. Using simulations and case analyses, we showed in optimizing GRAMMAR, polygenic effects and genomic controls could be evaluated using the fewer sampling markers, which extremely simplified GLMM-based association analysis in large-scale data. In addition, joint analysis for quantitative trait nucleotide (QTN) candidates chosen by multiple testing offered significant improved statistical power to detect QTNs over existing methods.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 266-266
Author(s):  
Shan Lin ◽  
Clement Larrue ◽  
Nastassja K. Scheidegger ◽  
Bo Kyung A. Seong ◽  
Neekesh V Dharia ◽  
...  

Abstract First-generation, large-scale functional genomic screens have revealed hundreds of potential genetic vulnerabilities in acute myeloid leukemia (AML), a devastating hematologic malignancy with poor overall survival. Because these large-scale genetic screens were primarily performed in vitro in established AML cell lines, their translational relevance has been debated. Therefore, we established a protocol for CRISPR screening in orthotopic xenograft models of human AML, including patient-derived-xenograft (PDX) models that are tractable for CRISPR-editing. We first defined experimental conditions necessary for an optimal in vivo screen via barcoding experiments. We determined that sub-lethal irradiation was necessary for improved barcode representation in bone marrow and to reduce mouse-to-mouse variation. Moreover, it was critical to combine samples from multiple mice to achieve complete in vivo library representation. Next, using the Broad DepMap and other publicly available functional genomic screen data, we identified 200 genes that were stronger dependencies in AML cell lines compared to all other cancer types screened. Using this list, we created a secondary library and performed parallel in vivo and in vitro screens using the MV4-11 and U937 cell lines and a PDX model. In vitro and in vivo hits were surprisingly well correlated, although a modest number of targets did not score well in vivo. Notably, dependencies identified across AML cell line models were strongly recapitulated in the PDX model, validating the application of AML cell lines for dependency discovery. Our in vivo screens nominated the mitochondria-localized RING-type ubiquitin E3 ligase MARCH5 as a potential therapeutic target in AML. Using CRISPR, we first validated this in vitro dependency on MARCH5 and determined that MARCH5 is a critical guardian to prevent apoptosis in AML. MARCH5 depletion activates the canonical mitochondrial apoptosis pathway in a BAX/BAK1-dependent manner. Multiple genome-wide screens revealed that a dependency on MARCH5 is strongly correlated with a dependency on MCL1, but not other anti-apoptotic BCL2-family members, across the AML cell lines in the screen. As observed with MCL1 inhibition, MARCH5 depletion sensitized AML cells to venetoclax, a BCL2-specific inhibitor FDA-approved in combination with a hypomethylating agent for the treatment of older adults with AML. Importantly, MARCH5 depletion diminished the venetoclax resistance induced by MCL1 overexpression but not that caused by BCLXL overexpression. Altogether, these results suggest that MARCH5 is required for maintaining MCL1 activity specifically. Since there are no small molecule inhibitors directed against MARCH5, we deployed a dTAG system as an approximation of pharmacological inhibition. This approach uses a hetero-bifunctional small molecule that binds the FKBP12 F36V-fused MARCH5 and the E3 ligase VHL, leading to the ubiquitination and proteasome-mediated degradation of the fusion protein. dTAG-MARCH5 cells were established via deleting endogenous MARCH5 by CRISPR and expressing exogenous FKBP-tagged MARCH5 protein. MARCH5 degradation with the dTAG molecule dTAG V-1 markedly impaired cell growth in vitro. Additionally, we demonstrated the utility of dTAG system in vivo using a PDX model. The combination treatment of dTAG V-1 and venetoclax elicited a much stronger anti-leukemic effect compared to the treatment with only venetoclax or dTAG V-1, further highlighting MARCH5 as a promising synergistic target for enhancing the efficacy of venetoclax in AML. Taken together, our in vivo screening approach, coupled with CRISPR-competent PDX models and dTAG-directed protein degradation, constitute a useful platform for prioritizing AML targets emerging from in vitro screens to serve as the starting point for therapy development. Disclosures Dharia: Genentech: Current Employment. Piccioni: Merck Research Laboratories: Current Employment. Stegmaier: Bristol Myers Squibb: Consultancy; KronosBio: Consultancy; AstraZeneca: Consultancy; Auron Therapeutics: Consultancy, Current equity holder in publicly-traded company; Novartis: Research Funding.


2021 ◽  
Author(s):  
Lucia F Cardo ◽  
Meng Li

Disruptions of SETBP1 (SET binding protein 1) on 18q12.3 by heterozygous gene deletion or loss-of-function variants cause SETBP1 disorder. Clinical features are frequently associated with moderate to severe intellectual disability, autistic traits and speech and motor delays. Despite SETBP1 association with neurodevelopmental disorders, little is known about its role in brain development. Using CRISPR/CAS9 genome editing technology, we generated a SETBP1 deletion model in human embryonic stem cells (hESCs), and examined the effects of SETBP1-deficiency in in vitro derived neural progenitors (NPCs) and neurons using a battery of cellular assays, genome wide transcriptomic profiling and drug-based phenotypic rescue. SETBP1-deficient NPCs exhibit protracted proliferation and distorted layer-specific neuronal differentiation with overall decrease in neurogenesis. Genome wide transcriptome profiling and protein biochemical analysis showed that SETBP1 deletion led to enhanced activation of WNT/B-catenin signaling. Crucially, treatment of the SETBP1-deficient NPCs with a small molecule WNT inhibitor XAV939 restored hyper canonical B-catenin activity and rescued cortical neuronal differentiation. Our study establishes a novel regulatory link between SETBP1 and WNT/B-catenin signaling during human cortical neurogenesis and provides mechanistic insights into structural abnormalities and potential therapeutic avenues for SETBP1 disorder.


2021 ◽  
Author(s):  
Brian C Zhang ◽  
Arjun Biddanda ◽  
Pier Francesco Palamara

Accurate inference of gene genealogies from genetic data has the potential to facilitate a wide range of analyses. We introduce a method for accurately inferring biobank-scale genome-wide genealogies from sequencing or genotyping array data, as well as strategies to utilize genealogies within linear mixed models to perform association and other complex trait analyses. We use these new methods to build genome-wide genealogies using genotyping data for 337,464 UK Biobank individuals and to detect associations in 7 complex traits. Genealogy-based association detects more rare and ultra-rare signals (N = 133, frequency range 0.0004% - 0.1%) than genotype imputation from ~65,000 sequenced haplotypes (N = 65). In a subset of 138,039 exome sequencing samples, these associations strongly tag (average r = 0.72) underlying sequencing variants, which are enriched for missense (2.3×) and loss-of-function (4.5×) variation. Inferred genealogies also capture additional association signals in higher frequency variants. These results demonstrate that large-scale inference of gene genealogies may be leveraged in the analysis of complex traits, complementing approaches that require the availability of large, population-specific sequencing panels.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 405-405 ◽  
Author(s):  
Omar Abdel-Wahab ◽  
Mazhar Adli ◽  
Lindsay Saunders ◽  
Jie Gao ◽  
Alan H. Shih ◽  
...  

Abstract Abstract 405 Somatic mutations in ASXL1 have been identified in patients with myeloid malignancies and are associated with worsened overall survival in AML and MDS patients. However the mechanisms of myeloid transformation of ASXL1 mutations had not been delineated. We therefore performed extensive in vitro and in vivo studies to assess the functional implications of ASXL1 mutations in the hematopoietic compartment. Transcriptional and Western blot analysis demonstrated loss of ASXL1 protein in primary leukemia samples with endogenous ASXL1 mutations indicating that these mutations are loss-of-function disease alleles. Further, ASXL1 depletion by shRNA in normal and malignant hematopoietic cells leads to robust upregulation of a set of genes including the posterior HOXA cluster (HoxA5-HoxA13). Increased HoxA gene expression was confirmed in human hematopoietic stem progenitor cells targeted with ASXL1 siRNA and in mice with conditional deletion of Asxl1 in the hematopoietic compartment. Previous studies in Drosophila had revealed that Asxl forms the polycomb-repressive deubiquitinase (PR-DUB) complex with BAP1, which normally opposes the function of polycomb repressive complex 1 (PRC1) by removing H2AK119 ubiquitination. We verified that wild-type, but not mutant ASXL1 associates with BAP1 in co-immunoprecipitation studies. However, BAP1 depletion in hematopoietic cells did not result in significant changes in HoxA gene expression, suggesting that ASXL1 regulates gene expression in hematopoietic cells independent of its role in the PR-DUB complex. We therefore performed CHIP sequencing for known activating and repressive chromatin marks and histone mass spectrometry to elucidate the genome-wide effects of ASXL1 loss on chromatin state in hematopoietic cells. This allowed us to show that ASXL1 loss resulted in genome-wide loss of the transcriptionally repressive mark H3K27me3 in hematopoietic cells and primary patient samples with ASXL1 mutations. These data were supported by western blot analysis and histone mass spectrometry demonstrating a significant loss of H3K27 trimethylation in ASXL1-mutant cells. Moreover, ASXL1 mutations in primary leukemia samples are characterized by loss of H3K27 trimethylation at the HoxA locus. These data led us to hypothesize that ASXL1 interacts with the PRC2 complex; co-immunoprecipitation studies revealed that ASXL1 associates with members of the PRC2 complex including EZH2 and SUZ12 but not with the PRC1 repressive complex. Importantly, ASXL1 downregulation resulted in loss of EZH2 recruitment to the HOXA locus indicating a role of ASXL1 in recruiting the PRC2 complex to known leukemogenic loci. We next assessed the effects of ASXL1 loss in vivo by generating a conditional knock-out model of ASXL1 and also by employing shRNA to deplete ASXL1 in hematopoietic cells expressing the NRASG12D oncogene. Consonant with the in vitro data, we observed HOXA9 overexpression with ASXL1 loss/depletion in vivo. Preliminary analysis reveals that conditional, hematopoietic specific ASXL1-knockout (ASXL1fl/fl Vav-Cre) mice are characterized by progressive expansion of LSK and myeloid progenitor cells in mice less than 6 months of age. After 6 months of age a significant proportion of ASXL1fl/fl Vav-Cre mice developed leukocytosis, anemia, thrombocytopenia, and splenomegaly; pathologic analysis of tissues revealed a phenotype consistent with myelodysplasia with myeloproliferative features. Moreover, loss of ASXL1 in cooperation with expression of NRasG12D resulted in impaired survival, increased myeloproliferation, and progressive anemia consistent with MPN/MDS in vivo. Taken together, these results reveal that ASXL1 mutations result in a loss-of-function and suggest a specific role for ASXL1 in epigenetic regulation of gene expression by facilitating PRC2-mediated transcriptional repression of known leukemic oncogenes. Moreover, our in vivo data validate the importance of ASXL1 mutations in the pathogenesis of myeloid malignancies and provide insight into how mutations that inhibit PRC2 function contribute to myeloid transformation through epigenetic dysregulation of specific target genes. Disclosures: Carroll: Agios Pharmaceuticals: Research Funding; TetraLogic Pharmaceuticals: Research Funding; Sanofi Aventis Corporation: Research Funding; Glaxo Smith Kline, Inc.: Research Funding.


2018 ◽  
Vol 19 (11) ◽  
pp. 3583 ◽  
Author(s):  
Michelangelo Paci ◽  
Simona Casini ◽  
Milena Bellin ◽  
Jari Hyttinen ◽  
Stefano Severi

Loss-of-function long QT (LQT) mutations inducing LQT1 and LQT2 syndromes have been successfully translated to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) used as disease-specific models. However, their in vitro investigation mainly relies on experiments using small numbers of cells. This is especially critical when working with cells as heterogeneous as hiPSC-CMs. We aim (i) to investigate in silico the ionic mechanisms underlying LQT1 and LQT2 hiPSC-CM phenotypic variability, and (ii) to enable massive in silico drug tests on mutant hiPSC-CMs. We combined (i) data of control and mutant slow and rapid delayed rectifying K+ currents, IKr and IKs respectively, (ii) a recent in silico hiPSC-CM model, and (iii) the population of models paradigm to generate control and mutant populations for LQT1 and LQT2 cardiomyocytes. Our four populations contain from 1008 to 3584 models. In line with the experimental in vitro data, mutant in silico hiPSC-CMs showed prolonged action potential (AP) duration (LQT1: +14%, LQT2: +39%) and large electrophysiological variability. Finally, the mutant populations were split into normal-like hiPSC-CMs (with action potential duration similar to control) and at risk hiPSC-CMs (with clearly prolonged action potential duration). At risk mutant hiPSC-CMs carried higher expression of L-type Ca2+, lower expression of IKr and increased sensitivity to quinidine as compared to mutant normal-like hiPSC-CMs, resulting in AP abnormalities. In conclusion, we were able to reproduce the two most common LQT syndromes with large-scale simulations, which enable investigating biophysical mechanisms difficult to assess in vitro, e.g., how variations of ion current expressions in a physiological range can impact on AP properties of mutant hiPSC-CMs.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 948-948
Author(s):  
Miguel Quijada Álamo ◽  
María Hernández-Sánchez ◽  
José Luis Ordóñez ◽  
Verónica Alonso Pérez ◽  
Ana E. Rodriguez ◽  
...  

Abstract Chromosome 11q22.3 deletion (del(11q)) is one of the most common cytogenetic alterations in CLL and usually involves both ATM and BIRC3 genes. Concomitant mutations in ATM and/or BIRC3 in the remaining allele have been associated with poor survival. Despite the encouraging efficacy of novel agents targeting BCR and BCL2 pathways, del(11q) patients still have an inferior outcome and the development of resistance to these drugs has been increasingly reported. We therefore investigated the functional impact of del(11q) together with loss-of-function mutations in ATM and/or BIRC3 and whether CLLs harboring these alterations could benefit from novel combinatorial therapies. To address these questions, we used the CRISPR/Cas9 system to generate an isogenic CLL cell line to model del(11q) derived from HG3 cells by introducing two guide RNAs targeting the 11q22.1 and 11q23.3 regions. The presence of a monoallelic deletion (size ~17 Mb) was confirmed in 100% of the cells by FISH. Truncating mutations in ATM and/or BIRC3 were introduced in the remaining allele, generating HG3 del(11q) ATMKO, del(11q) BIRC3KO and del(11q) ATMKOBIRC3KO (three clones per condition). In addition, single ATMKO and BIRC3KO mutations, or the combination of both, were introduced into both HG3 and MEC1 CLL-derived cells (three clones per condition). Functional in vitro studies revealed that del(11q) BIRC3KO cells had increased growth rates compared to del(11q) BIRC3WT clones (P<0.01). Similar results were observed in HG3 and MEC1 BIRC3KO cells (P<0.01; P<0.05). Moreover, biallelic inactivation of BIRC3 in del(11q) cells resulted in cytoplasmic stabilization of NF-kB-inducing kinase (NIK), leading to higher nuclear NF-kB2 (p52) activation (P<0.01) as measured by ELISA. In parallel, we analyzed the DNA damage response (DDR) of these cells, and showed that del(11q) ATMKO cells displayed reduced pH2AX levels (P<0.001) and an accumulation of unrepaired double strand breaks (DSB) (P<0.001) after irradiation, as determined by comet assays. Consistently, in vivo subcutaneous xenografts showed that HG3 ATMKOBIRC3KO tumors presented proliferative advantage, higher p52 levels and greater genomic and mitotic instability than HG3WT tumors, indicating a more aggressive phenotype. We next assessed the response of these CRISPR/Cas9-edited CLL cell lines to therapy. Of note, only TP53KO clones (also generated by CRISPR/Cas9), and not del(11q) BIRC3KO cells, showed resistance to fludarabine (mean IC50 16.9 uM vs. 4.1 uM; mean apoptotic cells (5 uM) 5.5% vs. 22.5%; P<0.05). Moreover, del(11q) cells were slightly more resistant to ibrutinib (IBRU) treatment compared to WT cells (mean IC50 10 uM vs. 3.7 uM; P<0.05). Interestingly, exploiting the DDR deficiencies underlying del(11q) by targeting the single strand break repair pathway with the PARP inhibitor olaparib (OLA), del(11q) ATMKO cells were not able to proliferate even 12 days after treatment (3 uM), independently of the mutational status of BIRC3 (P<0.01). In vivo intravenous HG3-derived xenografts (N=20) showed that OLA (100 mg/kg) reduced hCD45+ cells in the peripheral blood (P<0.01) and significantly improved survival of del(11q) ATMKOBIRC3KO xenografted mice (P<0.01). Moreover, IBRU potentiated the effects of OLA in cell viability (72h) in all the del(11q) clones (combination indexes 0.69-0.85), leading to an increased necrotic cell death, as shown by annexin V/PI staining (P<0.001) and HMGB1 release. Remarkably, we found that IBRU caused downregulation of the DNA repair protein RAD51, leading to impaired RAD51 foci formation in DSB lesions (P<0.01). Consistently, IBRU (1 uM) reduced the homologous recombination (HR) repair efficiency in HG3 cells (P=0.001), as determined by an HR-reporter construct. This IBRU-dependent impairment of HR repair could explain the synergistic effects with OLA by synthetic lethality. In conclusion, we demonstrate that del(11q) CLL cells with biallelic inactivation of BIRC3 and ATM show enhanced proliferation through activation of the non-canonical NF-kB pathway, and accumulation of DNA damage contributing to genomic instability. We show that these defects on the DDR can be therapeutically targeted by synthetic lethal approaches using PARP inhibitors either alone or in combination with BCR inhibitors, providing a rationale for the study of this combination in relapsed del(11q) CLL patients. PI15/01471 SA085U16 JCyL-MQ FEHH-MH Disclosures García-Tuñón: Novartis: Research Funding. Wu:Neon Therapeutics: Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document