scholarly journals An atypical NLR protein modulates the NRC immune receptor network

2021 ◽  
Author(s):  
Hiroaki Adachi ◽  
Toshiyuki Sakai ◽  
Adeline Harant ◽  
Cian Duggan ◽  
Tolga Bozkurt ◽  
...  

The NRC immune receptor network has evolved in asterid plants from a pair of linked genes into a genetically dispersed and phylogenetically structured network of sensor and helper NLR (nucleotide-binding domain and leucine-rich repeat-containing) proteins. In some species, such as the model plant Nicotiana benthamiana and other Solanaceae, the NRC network forms up to half of the NLRome, and NRCs are scattered throughout the genome in gene clusters of varying complexities. Here, we describe NRCX, an atypical, but essential member of the NRC family that lacks canonical features of these NLR helper proteins, such as a functional N-terminal MADA motif and the capacity to trigger autoimmunity. In contrast to other NRCs, systemic gene silencing of NRCX markedly impairs plant growth resulting in a dwarf phenotype. Remarkably, dwarfism of NRCX silenced plants is partially dependent on NRCX paralogs NRC2 and NRC3, but not NRC4. Despite its negative impact on plant growth when silenced systemically, transient RNA interference of NRCX in mature N. benthamiana leaves does not result in visible cell death phenotypes. However, alteration of NRCX expression modulates the hypersensitive response mediated by NRC2 and NRC3 in a manner consistent with a negative role for NRCX in the NRC network. We conclude that NRCX is an atypical member of the NRC network that has evolved to contribute to the homeostasis of this genetically unlinked NLR network.

2015 ◽  
Vol 291 (3) ◽  
pp. 1137-1147 ◽  
Author(s):  
Stepan Fenyk ◽  
Christopher H. Dixon ◽  
William H. Gittens ◽  
Philip D. Townsend ◽  
Gary J. Sharples ◽  
...  

2021 ◽  
Author(s):  
Zhongshou Wu ◽  
Lei Tian ◽  
Xin Li

AbstractBoth animals and plants utilize nucleotide-binding leucine-rich repeat immune receptors (NLRs) to perceive the presence of pathogen-derived molecules and induce immune responses. NLR genes are far more abundant and diverse in higher plants. Interestingly, truncated NLRs, which lack one or more of the canonical domains, are also commonly encoded in plant genomes. However, little is known about their functions, especially regarding the N-terminally truncated ones. Here, we show that Arabidopsis thaliana (A. thaliana) N-terminally truncated helper NLR gene NRG1C (N REQUIREMENT GENE 1) is highly induced upon pathogen infection and in autoimmune mutants. The immune response and cell death conferred by some TIR (Toll/interleukin-1 receptor)-type NLRs (TNLs) are compromised in the NRG1C overexpression lines. Detailed genetic analysis revealed that NRG1C antagonizes the immunity mediated by its full-length neighbors NRG1A and NRG1B. Biochemical tests indicate that NRG1C possibly interferes with the EDS1-SAG101 complex, which likely signals together with NRG1A/1B. Interestingly, Brassicaceae NRG1Cs are functionally exchangeable, and the Nicotiana benthamiana (N. benthamiana) N-terminally truncated helper NLR NRG2 antagonizes NRG1 in tobacco. Together, our study uncovers an unexpected negative role of N-terminally truncated helper NLRs in different plants.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lu Zhou ◽  
Chunxu Song ◽  
Zhibo Li ◽  
Oscar P. Kuipers

Abstract Background Tomato plant growth is frequently hampered by a high susceptibility to pests and diseases. Traditional chemical control causes a serious impact on both the environment and human health. Therefore, seeking environment-friendly and cost-effective green methods in agricultural production becomes crucial nowadays. Plant Growth Promoting Rhizobacteria (PGPR) can promote plant growth through biological activity. Their use is considered to be a promising sustainable approach for crop growth. Moreover, a vast number of biosynthetic gene clusters (BGCs) for secondary metabolite production are being revealed in PGPR, which helps to find potential anti-microbial activities for tomato disease control. Results We isolated 181 Bacillus-like strains from healthy tomato, rhizosphere soil, and tomato tissues. In vitro antagonistic assays revealed that 34 Bacillus strains have antimicrobial activity against Erwinia carotovora, Pseudomonas syringae; Rhizoctonia solani; Botrytis cinerea; Verticillium dahliae and Phytophthora infestans. The genomes of 10 Bacillus and Paenibacillus strains with good antagonistic activity were sequenced. Via genome mining approaches, we identified 120 BGCs encoding NRPs, PKs-NRPs, PKs, terpenes and bacteriocins, including known compounds such as fengycin, surfactin, bacillibactin, subtilin, etc. In addition, several novel BGCs were identified. We discovered that the NRPs and PKs-NRPs BGCs in Bacillus species are encoding highly conserved known compounds as well as various novel variants. Conclusions This study highlights the great number of varieties of BGCs in Bacillus strains. These findings pave the road for future usage of Bacillus strains as biocontrol agents for tomato disease control and are a resource arsenal for novel antimicrobial discovery.


2020 ◽  
Vol 1 (4) ◽  
pp. 783-790
Author(s):  
Nurmala Alqisthi Najmudillah ◽  
Endang Krisnawati ◽  
Nawangwulan Widyastuti

Counseling is a process of education outside the school which is systematically organized aimed at adults (the community) so that they are willing, able and self-sufficient in improving or improving the welfare of their families and the wider community. The concept of counseling that will be taken is interest as the participation of a person (farmer) or community group in the development process both in the form of statements and in the form of activities by providing input of thought, energy, time, expertise, capital or material, as well as participating in and enjoying the results. development results. With the negative impact of pesticides, alternative technologies are needed to increase safer agricultural production, namely the use of Plant Growth Promoting Rhizobacteria (PGPR). The analysis used in this thesis research is to use descriptive analysis, the level of interest of chilli farmers in the application of PGPR is analyzed by means of tabulating the data then the average value of the total questions on each indicator item. The assessment of the question is obtained based on the respondent's answer. Then using Simple Regression analysis is a linear relationship between one independent variable (X) and the dependent variable (Y). Then by using Kendall's W Analysis, which is devising a strategy to increase the change in the behavior of chilli farmers' interest in implementing PGPR from the lowest to the highest.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 137
Author(s):  
Maedeh Kamali ◽  
Dianjing Guo ◽  
Shahram Naeimi ◽  
Jafar Ahmadi

Tomato Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici (Fol), is a destructive disease that threatens the agricultural production of tomatoes. In the present study, the biocontrol potential of strain KR2-7 against Fol was investigated through integrated genome mining and chemical analysis. Strain KR2-7 was identified as B. inaquosorum based on phylogenetic analysis. Through the genome mining of strain KR2-7, we identified nine antifungal and antibacterial compound biosynthetic gene clusters (BGCs) including fengycin, surfactin and Bacillomycin F, bacillaene, macrolactin, sporulation killing factor (skf), subtilosin A, bacilysin, and bacillibactin. The corresponding compounds were confirmed through MALDI-TOF-MS chemical analysis. The gene/gene clusters involved in plant colonization, plant growth promotion, and induced systemic resistance were also identified in the KR2-7 genome, and their related secondary metabolites were detected. In light of these results, the biocontrol potential of strain KR2-7 against tomato Fusarium wilt was identified. This study highlights the potential to use strain KR2-7 as a plant-growth promotion agent.


2017 ◽  
Author(s):  
Aleksandra Białas ◽  
Erin K. Zess ◽  
Juan Carlos De la Concepcion ◽  
Marina Franceschetti ◽  
Helen G. Pennington ◽  
...  

A diversity of plant-associated organisms secrete effectors—proteins and metabolites that modulate plant physiology to favor host infection and colonization. However, effectors can also activate plant immune receptors, notably nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins, enabling plants to fight off invading organisms. This interplay between effectors, their host targets, and the matching immune receptors is shaped by intricate molecular mechanisms and exceptionally dynamic coevolution. In this article, we focus on three effectors, AVR-Pik, AVR-Pia, and AVR-Pii, from the rice blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae), and their corresponding rice NLR immune receptors, Pik, Pia, and Pii, to highlight general concepts of plant-microbe interactions. We draw 12 lessons in effector and NLR biology that have emerged from studying these three little effectors and are broadly applicable to other plant-microbe systems.


2021 ◽  
Vol 16 (AAEBSSD) ◽  
pp. 77-85
Author(s):  
Sridevi Tallapragada ◽  
Rajesh Lather ◽  
Vandana ◽  
Gurnam Singh

Phytoremediation is the plant-based technology that has emerged as a novel cost effective and ecofriendly technology in which green plants are used for extraction, sequestration and/or detoxification of the pollutants. Plants possess the natural ability to degrade heavy metals and this property of plants to detoxify contaminants can be used by genetic engineering approach. Currently, the quality of soil and water has degraded considerably due heavy metal accumulation through discharge of industrial, agricultural and domestic waste. Heavy metal pollution is a global concern and a major health threat worldwide. They are toxic, and can damage living organisms even at low concentrations and tend to accumulate in the food chain. The most common heavy metal contaminants are: As, Cd, Cr, Cu, Hg, Pb and Zn. High levels of metals in soil can be phytotoxic, leading to poor plant growth and soil cover due to metal toxicity and can lead to metal mobilization in runoff water and thus have a negative impact on the whole ecosystem. Phytoremediation is a green strategy that uses hyperaccumulator plants and their rhizospheric micro-organisms to stabilize, transfer or degrade pollutants in soil, water and environment. Mechanisms used to remediate contaminated soil includes phytoextraction, phytostabilization, phytotransformation, phytostimulation, phytovolatilization and rhizofiltration. Traditional phytoremediation method presents some limitations regarding their applications at large scale, so the application of genetic engineering approaches such as transgenic transformation, nanoparticles addition and phytoremediation assisted with phytohormones, plant growth-promoting bacteria and Arbuscular mycorrhizal fungi (AMF) inoculation has been applied to ameliorate the efficacy of plants for heavy metals decontamination. In this review, some recent innovative technologies for improving phytoremediation and heavy metals toxicity and their depollution procedures are highlighted.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hu Zhou ◽  
Zuo-hua Ren ◽  
Xue Zu ◽  
Xi-yue Yu ◽  
Hua-jun Zhu ◽  
...  

Bacillus cereus YN917, obtained from a rice leaf with remarkable antifungal activity against Magnaporthe oryzae, was reported in our previous study. The present study deciphered the possible biocontrol properties. YN917 strain exhibits multiple plant growth-promoting and disease prevention traits, including production of indole-3-acetic acid (IAA), ACC deaminase, siderophores, protease, amylase, cellulase, and β-1,3-glucanase, and harboring mineral phosphate decomposition activity. The effects of the strain YN917 on growth promotion and disease prevention were further evaluated under detached leaf and greenhouse conditions. The results revealed that B. cereus YN917 can promote seed germination and seedling plant growth. The growth status of rice plants was measured from the aspects of rice plumule, radicle lengths, plant height, stem width, root lengths, fresh weights, dry weights, and root activity when YN917 was used as inoculants. YN917 significantly reduced rice blast severity under detached leaf and greenhouse conditions. Genome analysis revealed the presence of gene clusters for biosynthesis of plant promotion and antifungal compounds, such as IAA, tryptophan, siderophores, and phenazine. In summary, YN917 can not only be used as biocontrol agents to minimize the use of chemical substances in rice blast control, but also can be developed as bio-fertilizers to promote the rice plant growth.


2020 ◽  
Vol 23 ◽  
pp. 03011
Author(s):  
Yuliya M. Andriyanova ◽  
Irina V. Sergeyeva ◽  
Nataliya N. Gusakova ◽  
Yuliya M. Mokhonko

Stress protectors (adaptogens) are among the most important factors that regulate growth processes at all stages of plant development. This article presents results of field studies of the effect of new synthetic plant growth regulators of stress protectors (adaptogens) on the elements of productivity and yield of spring oats of the Skakun variety. The obtained results during the research showed that all the studied derivatives of peredazinones are adaptogens and they contribute to an increased productivity and increased yield of spring oats. We studied the effect of pre-sowing treatment of seeds with new synthetic plant growth regulators of stress protectors on the quality indicators of cereal production of Skakun oats (protein, starch and amylolytic enzymes content in the cereal). Pre-sowing treatment of oat seeds increases the amount of protein in the cereal up to 15%, starch – up to 25%, amylase – up to 20%. We proved the ability of stress protectors to minimize the negative impact of heavy metals (lead, zinc) on agrophytocenoses, which will make it possible to obtain environmentally friendly cereal products when cultivating oats in anthropogenically polluted areas of the Saratov Oblast.


Sign in / Sign up

Export Citation Format

Share Document