scholarly journals Ribonucleotide Reductase Regulatory Subunit M2 as a Driver of Glioblastoma TMZ-Resistance through Modulation of dNTP Production

2021 ◽  
Author(s):  
Ella N Perrault ◽  
Jack M Shireman ◽  
Eunus S Ali ◽  
Isabelle Preddy ◽  
Peiyu Lin ◽  
...  

Glioblastoma (GBM) remains one of the most resistant and fatal forms of cancer. Previous studies have examined primary and recurrent GBM tumors, but it is difficult to study tumor evolution during therapy where resistance develops. To investigate this, we performed an in vivo single-cell RNA sequencing screen in a patient-derived xenograft (PDX) model. Primary GBM was modeled by mice treated with DMSO control, recurrent GBM was modeled by mice treated with temozolomide (TMZ), and during therapy GBM was modeled by mice euthanized after two of five TMZ treatments. Our analysis revealed the cellular population present during therapy to be distinct from primary and recurrent GBM. We found the Ribonucleotide Reductase gene family to exhibit a unique signature in our data due to an observed subunit switch to favor RRM2 during therapy. GBM cells were shown to rely on RRM2 during therapy causing RRM2-knockdown (KD) cells to be TMZ-sensitive. Using targeted metabolomics, we found RRM2-KDs to produce less dGTP and dCTP than control cells in response to TMZ (p<0.0001). Supplementing RRM2-KDs with deoxycytidine and deoxyguanosine rescued TMZ-sensitivity, suggesting an RRM2-driven mechanism of chemoresistance, established by regulating the production of these nucleotides. In vivo, tumor-bearing mice treated with the RRM2-inhibitor, Triapine, in combination with TMZ, survived longer than mice treated with TMZ alone (p<0.01), indicating promising clinical opportunities in targeting RRM2. Our data present a novel understanding of RRM2 activity, and its alteration during therapeutic stress as response to TMZ-induced DNA damage.

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi81-vi82
Author(s):  
Ella Perrault ◽  
Jack Shireman ◽  
Peiyu Lin ◽  
Eunus Ali ◽  
Andrew Zolp ◽  
...  

Abstract Glioblastoma (GBM) remains one of the most resistant and fatal forms of cancer. Previous studies examine pre- and post-tumor recurrence; however, it is incredibly difficult to study tumor evolution during therapy where resistance develops. To investigate this, our lab performed a single-cell RNA-sequencing screen before, during, and after temozolomide-based (TMZ) chemotherapy in a patient-derived xenograft (PDX) model in vivo. Our analysis found 149 genes uniquely expressed during TMZ-therapy compared to pre- and post-therapy (p&lt; 0.0001). Of these, the ribonucleotide reductase (RNR) gene family stood out due to the preferential switch to Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) during therapy. Classically, RRM2, or its isoform RRM2B, forms a complex with RRM1 to create an RNR, mediating deoxynucleoside triphosphate (dNTP) production. Our single-cell data revealed that GBM cells rely on RRM1-RRM2 interaction during therapy, but switch to RRM1-RRM2B in post-therapy recurrent GBM. In vitro, RRM2-knockdown cells increased TMZ susceptibility, whereas RRM1- and RRM2B-knockdowns were more resistant to TMZ (p&lt; 0.001). Immunocytochemistry found elevated yH2AX fluorescence in RRM2-knockdowns after TMZ treatment, signifying reduced DNA repair capacity compared to the control (p&lt; 0.001). To understand the mechanism of RRM2-mediated chemoresistance, targeted metabolomics was applied to quantify dNTP signatures during TMZ-therapy. In response to TMZ, dCTP and dGTP production in GBM cells increased 100-fold and 80-fold respectively (p&lt; 0.001). RRM2-knockdowns produced significantly less dCTP and dGTP (p&lt; 0.0001). By supplementing RRM2-knockdowns with dCTP and dGTP, TMZ-susceptibility was rescued, suggesting that RRM2 drives chemoresistance by promoting production of these two nucleotides. In vivo, following intracranial injection of GBM cells, mice treated with the RRM2 inhibitor Triapine with TMZ survived longer than those treated with TMZ alone, indicating promising clinical opportunities in targeting RRM2 (p&lt; 0.0001). Overall, our data present a novel understanding of how RRM2 activity is altered during therapeutic stress to counteract TMZ-induced DNA damage.


Oncogene ◽  
2021 ◽  
Author(s):  
Xiaoning Wu ◽  
Elena Seraia ◽  
Stephanie B. Hatch ◽  
Xiao Wan ◽  
Daniel V. Ebner ◽  
...  

AbstractWe recently reported that genetic or pharmacological inhibition of insulin-like growth factor receptor (IGF-1R) slows DNA replication and induces replication stress by downregulating the regulatory subunit RRM2 of ribonucleotide reductase, perturbing deoxynucleotide triphosphate (dNTP) supply. Aiming to exploit this effect in therapy we performed a compound screen in five breast cancer cell lines with IGF neutralising antibody xentuzumab. Inhibitor of checkpoint kinase CHK1 was identified as a top screen hit. Co-inhibition of IGF and CHK1 caused synergistic suppression of cell viability, cell survival and tumour growth in 2D cell culture, 3D spheroid cultures and in vivo. Investigating the mechanism of synthetic lethality, we reveal that CHK1 inhibition in IGF-1R depleted or inhibited cells further downregulated RRM2, reduced dNTP supply and profoundly delayed replication fork progression. These effects resulted in significant accumulation of unreplicated single-stranded DNA and increased cell death, indicative of replication catastrophe. Similar phenotypes were induced by IGF:WEE1 co-inhibition, also via exacerbation of RRM2 downregulation. Exogenous RRM2 expression rescued hallmarks of replication stress induced by co-inhibiting IGF with CHK1 or WEE1, identifying RRM2 as a critical target of the functional IGF:CHK1 and IGF:WEE1 interactions. These data identify novel therapeutic vulnerabilities and may inform future trials of IGF inhibitory drugs.


1992 ◽  
Vol 17 (2) ◽  
pp. 145-156 ◽  
Author(s):  
Arit D. Idowu ◽  
Elizabeth B. Fraser-Smith ◽  
Kimber L. Poffenberger ◽  
Ronald C. Herman

1978 ◽  
Vol 17 (06) ◽  
pp. 238-248
Author(s):  
H. Beekhuis ◽  
M.A.P.C. van de Poll ◽  
A. Versluis ◽  
H. Jurjens ◽  
M.G. Woldring ◽  
...  

Investigations with bleomycin labelled with radionuclides other than 57Co in patients with cancer and in tumor-bearing animals are described. In patients 57Co-bleo appears to be a better tumor-seeking radiopharmaceutical than 111In-bleo, 99mTc-bleo or 197Hg-bleo. This can be explained by a higher stability in vivo and a better tumor-seeking property of 57Co-bleo and less disturbing activity in the cardiac pool and in bone and other normal tissues when assessing the scintigram.Results with 111In-bleo labelled in acidic solution are not essentially different from those with 111In-bleo labelled in neutral solution.Results of 197Hg-bleo are almost identical with those of 197HgCl2 regarding the tumor-seeking effect as well as the distribution in normal tissues and organs. Probably the complex of 197Hg to bleomycin is not stable in vivo. The superiority of 57Co-bleo over 99mTc-bleo, 197Hg-bleo and also over 67Cu-bleo is confirmed by experiments on tumor bearing animals.We may conclude that the indication for use of bleomycin as a tumor-seeking pharmaceutical labelled with 111In, 99mTc, 197Hg or 67Cu seems to be very limited.


1972 ◽  
Vol 11 (01) ◽  
pp. 70-78
Author(s):  
Esther Miller ◽  
Leopoldo Anghileri

SummaryThe distribution of 32P-polyphosphates (lineal and cross-linked) and 32Porthophosphate in normal and tumor bearing animals has been studied. Differences between the cross-linked and the lineal form are related to a different degree of susceptibility to the hydrolysis by the phosphatases. In contrast to orthophosphate, the polyphosphates showed a lower accumulation in soft tissues which gives an advantageous reduction of the total body radiation dose.


1976 ◽  
Vol 15 (04) ◽  
pp. 183-184 ◽  
Author(s):  
L. J. Anghileri ◽  
M. Heidbreder ◽  
R. Mathes

SummaryThe in vivo distribution of 57Co-hematoporphyrin in adenocarcinoma BW10232-bearing mice has been studied. Tumor-bearing and normal animals exhibit similar patterns of radioactivity accumulation. Twenty-four hours after the administration of the radiocompound the ratios tumor to blood and tumor to muscle indicate a potential value of this radioactive porphyrin for the detection of some types of tumor.


2019 ◽  
Vol 19 (11) ◽  
pp. 1382-1387
Author(s):  
Ahmet M. Şenışık ◽  
Çiğdem İçhedef ◽  
Ayfer Y. Kılçar ◽  
Eser Uçar ◽  
Kadir Arı ◽  
...  

Background: Peptide-based agents are used in molecular imaging due to their unique properties, such as rapid clearance from the circulation, high affinity and target selectivity. Many of the radiolabeled peptides have been clinically experienced with diagnostic accuracy. The aim of this study was to investigate in vivo biological behavior of [99mTc(CO)3(H2O)3]+ radiolabeled glycylglycine (GlyGly). Methods: Glycylglycine was radiolabeled with a high radiolabeling yield of 94.69±2%, and quality control of the radiolabeling process was performed by thin layer radiochromatography (TLRC) and High-Performance Liquid Radiochromatography (HPLRC). Lipophilicity study for radiolabeled complex (99mTc(CO)3-Gly-Gly) was carried out using solvent extraction. The in vivo evaluation was performed by both biodistribution and SPECT imaging. Results: The high radiolabelling yield of 99mTc(CO)3-GlyGly was obtained and verified by TLRC and HPLRC as well. According to the in vivo results, SPECT images and biodistribution data are in good accordance. The excretion route from the body was both hepatobiliary and renal. Conclusion: This study shows that 99mTc(CO)3-GlyGly has the potential to be used as a peptide-based imaging agent. Further studies, 99mTc(CO)3-GlyGly can be performed on tumor-bearing animals.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 263
Author(s):  
Alexus D. Kolb ◽  
Jinlu Dai ◽  
Evan T. Keller ◽  
Karen M. Bussard

Breast cancer (BC) metastases to bone disrupt the balance between osteoblasts and osteoclasts, leading to excessive bone resorption. We identified a novel subpopulation of osteoblasts with tumor-inhibitory properties, called educated osteoblasts (EOs). Here we sought to examine the effect of EOs on osteoclastogenesis during tumor progression. We hypothesized that EOs affect osteoclast development in the bone-tumor niche, leading to suppressed pre-osteoclast fusion and bone resorption. Conditioned media (CM) was analyzed for protein expression of osteoclast factors receptor activator of nuclear factor kappa-β ligand (RANKL), osteoprotegerin (OPG), and tumor necrosis factor alpha (TNFα) via ELISA. EOs were co-cultured with pre-osteoclasts on a bone mimetic matrix to assess osteoclast resorption. Pre-osteoclasts were tri-cultured with EOs plus metastatic BC cells and assessed for tartrate-resistance acid phosphatase (TRAP)-positive, multinucleated (≥3 nuclei), mature osteoclasts. Tumor-bearing murine tibias were stained for TRAP to determine osteoclast number in-vivo. EO CM expressed reduced amounts of soluble TNFα and OPG compared to naïve osteoblast CM. Osteoclasts formed in the presence of EOs were smaller and less in number. Upon co-culture on a mimetic bone matrix, a 50% reduction in the number of TRAP-positive osteoclasts formed in the presence of EOs was observed. The tibia of mice inoculated with BC cells had less osteoclasts per bone surface in bones with increased numbers of EO cells. These data suggest EOs reduce osteoclastogenesis and bone resorption. The data imply EOs provide a protective effect against bone resorption in bone metastatic BC.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii102-ii103
Author(s):  
Syed Faaiz Enam ◽  
Jianxi Huang ◽  
Cem Kilic ◽  
Connor Tribble ◽  
Martha Betancur ◽  
...  

Abstract As a cancer therapy, hypothermia has been used at sub-zero temperatures to cryosurgically ablate tumors. However, these temperatures can indiscriminately damage both tumorous and healthy cells. Additionally, strategies designed to kill tumor typically accelerate their evolution and recurrence can be inevitable in cancers such as glioblastoma (GBM). To bypass these limitations, here we studied the use of hypothermia as a cytostatic tool against cancer and deployed it against an aggressive rodent model of GBM. To identify the minimal dosage of ‘cytostatic hypothermia’, we cultured at least 4 GBM lines at 4 continuous or intermittent degrees of hypothermia and evaluated their growth rates through a custom imaging-based assay. This revealed cell-specific sensitivities to hypothermia. Subsequently, we examined the effects of cytostatic hypothermia on these cells by a cursory study of their cell-cycle, energy metabolism, and protein synthesis. Next, we investigated the use of cytostatic hypothermia as an adjuvant to chemotherapy and CAR T immunotherapy. Our studies demonstrated that cytostatic hypothermia did not interfere with Temozolomide in vitro and may have been synergistic against at least 1 GBM line. Interestingly, we also demonstrated that CAR T immunotherapy can function under cytostatic hypothermia. To assess the efficacy of hypothermia in vivo, we report the design of an implantable device to focally administer cytostatic hypothermia in an aggressive rodent model of F98 GBM. Cytostatic hypothermia significantly doubled the median survival of tumor-bearing rats with no obvious signs of distress. The absence of gross behavioral alterations is in concurrence with literature suggesting the brain is naturally resilient to focal hypothermia. Based on these findings, we anticipate that focally administered cytostatic hypothermia alone has the potential to delay tumor recurrence or increase progression-free survival in patients. Additionally, it could also provide more time to evaluate concomitant, curative cytotoxic treatments.


Sign in / Sign up

Export Citation Format

Share Document