scholarly journals Recombination of standing variation in a multi-hybrid swarm drove adaptive radiation in a fungal pathogen and gave rise to two pandemic plant diseases

2021 ◽  
Author(s):  
Mostafa Rahnama ◽  
Bradford Condon ◽  
Joao P Ascari ◽  
Julian R Dupuis ◽  
Emerson M Del Ponte ◽  
...  

Adaptive radiations fuel speciation and are characterized by rapid genetic diversification and expansion into new ecological niches. Historically, these processes were believed to be driven by selection on novel mutations but genomic analyses now indicate that standing variation and gene flow often have prominent roles. How "old" variation is combined, however, and its resulting genetic architecture within newly adapted populations is not well understood. We reconstructed a recent radiation in the fungus, Pyricularia oryzae, that spawned a population pathogenic to eleven grass genera, and caused two new plant diseases: wheat blast - already a serious threat to global agriculture - and gray leaf spot of ryegrasses. We show that the new population evolved in a multi-hybrid swarm using only the standing variation that was present in seven individuals from five distinct, host-specialized lineages. Sexual and parasexual recombination within the swarm reassorted key host-specificity factors and generated more diversity in possibly just a few weeks than existing lineages had accumulated over hundreds to thousands of years. We suggest that the process was initiated by sexual opportunity arising when a fertile fungal strain was imported into Brazil on Urochloa introduced as forage for beef production; and we further contend that the host range expansion was largely fortuitous, with host selection playing little, if any, role in driving the process. Finally, we believe that our findings point to an overlooked role for happenstance in creating situations that allow organisms to skirt rules that would normally hold evolution in check.

Science ◽  
2019 ◽  
Vol 364 (6443) ◽  
pp. 886-889 ◽  
Author(s):  
Asano Ishikawa ◽  
Naoki Kabeya ◽  
Koki Ikeya ◽  
Ryo Kakioka ◽  
Jennifer N. Cech ◽  
...  

Colonization of new ecological niches has triggered large adaptive radiations. Although some lineages have made use of such opportunities, not all do so. The factors causing this variation among lineages are largely unknown. Here, we show that deficiency in docosahexaenoic acid (DHA), an essential ω-3 fatty acid, can constrain freshwater colonization by marine fishes. Our genomic analyses revealed multiple independent duplications of the fatty acid desaturase gene Fads2 in stickleback lineages that subsequently colonized and radiated in freshwater habitats, but not in close relatives that failed to colonize. Transgenic manipulation of Fads2 in marine stickleback increased their ability to synthesize DHA and survive on DHA-deficient diets. Multiple freshwater ray-finned fishes also show a convergent increase in Fads2 copies, indicating its key role in freshwater colonization.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
M’hamed BENADA ◽  
Boualem BOUMAAZA ◽  
Sofiane BOUDALIA ◽  
Omar KHALADI

Abstract Background The development of ecofriendly tools against plant diseases is an important issue in crop protection. Screening and selection process of bacterial strains antagonists of 2 pathogenic bacterial species that limit very important crops, Erwinia amylovora, the causal agent of the fire blight disease, and Pectobacterium carotovorum, the causal agent of bacterial potato soft rot, were reported. Bacterial colonies were isolated from different ecological niches, where both pathogens were found: rhizosphere of potato tubers and fruits and leaves of pear trees from the northwest region of Algeria. Direct and indirect confrontation tests against strains of E. amylovora and P. carotovorum were performed. Results Results showed a significant antagonistic activity against both phytopathogenic species, using direct confrontation method and supernatants of cultures (p<0.005). In vitro assays showed growth inhibitions of both phytopathogenic species. Furthermore, results revealed that the strains of S. plymuthica had a better inhibitory effect than the strains of P. fluorescens against both pathogens. In vivo results on immature pear fruits showed a significant decrease in the progression of the fire blight symptoms, with a variation in the infection index from one antagonistic strain to another between 31.3 and 50%, and slice of potato showed total inhibition of the pathogen (P. carotovorum) by the antagonistic strains of Serratia plymuthica (p<0.005). Conclusion This study highlighted that the effective bacteria did not show any infection signs towards plant tissue, and considered as a potential strategy to limit the fire blight and soft rot diseases.


Genetics ◽  
2006 ◽  
Vol 174 (1) ◽  
pp. 535-539 ◽  
Author(s):  
Marcus R. Kronforst ◽  
Durrell D. Kapan ◽  
Lawrence E. Gilbert

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2388
Author(s):  
Sk Mahmudul Hassan ◽  
Michal Jasinski ◽  
Zbigniew Leonowicz ◽  
Elzbieta Jasinska ◽  
Arnab Kumar Maji

Various plant diseases are major threats to agriculture. For timely control of different plant diseases in effective manner, automated identification of diseases are highly beneficial. So far, different techniques have been used to identify the diseases in plants. Deep learning is among the most widely used techniques in recent times due to its impressive results. In this work, we have proposed two methods namely shallow VGG with RF and shallow VGG with Xgboost to identify the diseases. The proposed model is compared with other hand-crafted and deep learning-based approaches. The experiments are carried on three different plants namely corn, potato, and tomato. The considered diseases in corns are Blight, Common rust, and Gray leaf spot, diseases in potatoes are early blight and late blight, and tomato diseases are bacterial spot, early blight, and late blight. The result shows that our implemented shallow VGG with Xgboost model outperforms different deep learning models in terms of accuracy, precision, recall, f1-score, and specificity. Shallow Visual Geometric Group (VGG) with Xgboost gives the highest accuracy rate of 94.47% in corn, 98.74% in potato, and 93.91% in the tomato dataset. The models are also tested with field images of potato, corn, and tomato. Even in field image the average accuracy obtained using shallow VGG with Xgboost are 94.22%, 97.36%, and 93.14%, respectively.


2020 ◽  
Vol 8 (11) ◽  
pp. 1679
Author(s):  
Valentina Méndez ◽  
Miryam Valenzuela ◽  
Francisco Salvà-Serra ◽  
Daniel Jaén-Luchoro ◽  
Ximena Besoain ◽  
...  

The genus Clavibacter has been associated largely with plant diseases. The aims of this study were to characterize the genomes and the virulence factors of Chilean C. michiganensis subsp. michiganensis strains VL527, MSF322 and OP3, and to define their phylogenomic positions within the species, Clavibacter michiganensis. VL527 and MSF322 genomes possess 3,396,632 and 3,399,199 bp, respectively, with a pCM2-like plasmid in strain VL527, with pCM1- and pCM2-like plasmids in strain MSF322. OP3 genome is composed of a chromosome and three plasmids (including pCM1- and pCM2-like plasmids) of 3,466,104 bp. Genomic analyses confirmed the phylogenetic relationships of the Chilean strains among C.michiganensis subsp. michiganensis and showed their low genomic diversity. Different virulence levels in tomato plants were observable. Phylogenetic analyses of the virulence factors revealed that the pelA1 gene (chp/tomA region)—that grouped Chilean strains in three distinct clusters—and proteases and hydrolases encoding genes, exclusive for each of the Chilean strains, may be involved in these observed virulence levels. Based on genomic similarity (ANIm) analyses, a proposal to combine and reclassify C. michiganensis subsp. phaseoli and subsp. chilensis at the species level, as C. phaseoli sp. nov., as well as to reclassify C. michiganensis subsp. californiensis as the species C. californiensis sp. nov. may be justified.


2014 ◽  
Author(s):  
Molly Schumer ◽  
Rongfeng Cui ◽  
Gil G Rosenthal ◽  
Peter Andolfatto

Despite its role in homogenizing populations, hybridization has also been proposed as a means to generate new species. The conceptual basis for this idea is that hybridization can result in novel phenotypes through recombination between the parental genomes, allowing a hybrid population to occupy ecological niches unavailable to parental species. A key feature of these models is that these novel phenotypes ecologically isolate hybrid populations from parental populations, precipitating speciation. Here we present an alternative model of the evolution of reproductive isolation in hybrid populations that occurs as a simple consequence of selection against incompatibilities. Unlike previous models, our model does not require small population sizes, the availability of new niches for hybrids or ecological or sexual selection on hybrid traits. We show that reproductive isolation between hybrids and parents evolves frequently and rapidly under this model, even in the presence of ongoing migration with parental species and strong selection against hybrids. Our model predicts that multiple distinct hybrid species can emerge from replicate hybrid populations formed from the same parental species, potentially generating patterns of species diversity and relatedness that mimic adaptive radiations.


2019 ◽  
Author(s):  
Gan Ai ◽  
Kun Yang ◽  
Yuee Tian ◽  
Wenwu Ye ◽  
Hai Zhu ◽  
...  

AbstractBeing widely existed in oomycetes, the RXLR effector features conserved RXLR-dEER motifs in its N terminal. Every known Phytophthora or Hyaloperonospora pathogen harbors hundreds of RXLRs. In Pythium species, however, none of the RXLR effectors has been characterized yet. Here, we developed a stringent method for de novo identification of RXLRs and characterized 359 putative RXLR effectors from nine tested Pythium species. Phylogenetic analysis revealed a single superfamily formed by all oomycetous RXLRs, suggesting they descent from a common ancestor. RXLR effectors from Pythium and Phytophthora species exhibited similar sequence features, protein structures and genome locations. In particular, the mosquito biological agent P. guiyangense contains a significantly larger RXLR repertoire than the other eight Pythium species examined, which may result from gene duplication and genome rearrangement events as indicated by synteny analysis. Expression pattern analysis of RXLR-encoding genes in the plant pathogen P. ultimum detected transcripts from the vast majority of predicted RXLRs with some of them being induced at infection stages. One such RXLRs showed necrosis-inducing activity. Furthermore, all predicted RXLRs were cloned from two biocontrol agents P. oligandrum and P. periplocum. Three of them were found to encode effectors inducing defense response in Nicotiana benthamiana. Taken together, our findings represent the first complete synopsis of Pythium RXLR effectors, which provides critical clues on their evolutionary patterns as well as the mechanisms of their interactions with diverse hosts.Author summaryPathogens from the Pythium genus are widespread across multiple ecological niches. Most of them are soilborne plant pathogens whereas others cause infectious diseases in mammals. Some Pythium species can be used as biocontrol agents for plant diseases or mosquito management. Despite that phylogenetically close oomycete pathogens secrete RXLR effectors to enable infection, no RXLR protein was previously characterized in any Pythium species. Here we developed a stringent method to predict Pythium RXLR effectors and compared them with known RXLRs from other species. All oomycetous RXLRs form a huge superfamily, which indicates they may share a common ancestor. Our sequence analysis results suggest that the expansion of RXLR repertoire results from gene duplication and genome recombination events. We further demonstrated that most predicted Pythium RXLRs can be transcribed and some of them encode effectors exhibiting pathogenic or defense-inducing activities. This work expands our understanding of RXLR evolution in oomycetes in general, and provides novel insights into the molecular interactions between Pythium pathogens and their diverse hosts.


2021 ◽  
Vol 22 (23) ◽  
pp. 12626
Author(s):  
Lidia Ruiz-Roldán ◽  
Beatriz Rojo-Bezares ◽  
Carmen Lozano ◽  
María López ◽  
Gabriela Chichón ◽  
...  

Pseudomonas is characterized by its great capacity to colonize different ecological niches, but also by its antimicrobial resistance and pathogenicity, causing human, animal, or plant diseases. Raw and undercooked food is a potential carrier of foodborne disease. The aim of this study was to determine the occurrence of Pseudomonas spp. among raw vegetables, analysing their antimicrobial resistance, virulence, and molecular typing. A total of 163 Pseudomonas spp. isolates (12 different species) were recovered from 77 of the 145 analysed samples (53.1%) and were classified into 139 different pulsed-field gel electrophoresis patterns. Low antimicrobial resistance levels, but one multidrug-resistant isolate, were found. Among the 37 recovered P. aeruginosa strains, 28 sequence-types and nine serotypes were detected. Eleven OprD patterns and an insertion sequence (ISPa1635) truncating the oprD gene of one imipenem-resistant strain were found. Ten virulotypes were observed, including four exoU-positive and thirty-one exoS-positive strains. The lasR gene was absent in three ST155 strains and was truncated by different insertion sequences (ISPre2, IS1411, and ISPst7) in other three strains. High biofilm, motility, pigment, elastase, and rhamnolipid production were detected. Our study demonstrated a low occurrence of P. aeruginosa (18%) and low antimicrobial resistance, but a high number of virulence-related traits in these P. aeruginosa strains, highlighting their pathological importance.


Author(s):  
Michel Baguette ◽  
Joris Bertrand ◽  
Virginie M. Stevens ◽  
Bertrand Schatz

Adaptive radiations occur mostly in response to environmental variation through the evolution of key eco-morphological innovations that allow emerging species to occupy new ecological niches. However, rapid phenotypic evolution and the evolution of key novelties are likely to also occur when a couple or few species are engaged into narrow ecological interactions. To demonstrate coevolution is a difficult task; only elusive evidences confirm that coevolution is a driver of speciation and diversification. Here we propose that the adaptive radiation of the Mediterranean orchid genus Ophrys, which gave rise to ca. 350 species since the apparition of the genus is due to the particular co-evolutionary dynamics between these plants and their pollinators. We suggest that the pollination by sexual swindle used by Ophrys orchids is the main driver of this coevolution. Flowers of each Ophrys species mimic sexually receptive females of one particular insect species, mainly bees. Male bees are attracted by pseudo-pheromones emitted by Ophrys flowers that are similar to the sexual pheromones of their females. Males lured by the flower shape, color and hairiness attempt to copulate with the flower, which glues pollen on their bodies. Pollen is eventually transferred to the stigma of another flower of the same Ophrys species during similar copulation attempts. Three observations led us to propose the scenario of an asymmetric co-evolutionary relationship between Ophrys and their pollinators. Firstly, there is a strong intra-specific competition among Ophrys individuals for the attraction of their species-specific pollinators, which is due to the high learning and memorization abilities of bees that record the pheromone signatures of kin or of previously courted partner to avoid (further) copulation attempts. Mnemonic pollinators induce thus a strong selective pressure for variation in the pseudo-pheromones emitted by individual flowers, which will potentially generate shifts in pollinator species, and hence Ophrys speciation. These pollinator shifts are adaptive for new Ophrys species because they may benefit from a competitor-free space. Secondly, such shifts in pollinator species are due to the random crossing of peaks in the olfactory landscape of the pollinator guild that is syntopic to each particular Ophrys population. This selective process on individual, random variation in pseudo-pheromone bouquets is followed by directional selection on flower phenotypes that will reinforce the attraction of the new pollinator. Thirdly, pollinators use the pseudo-pheromones emitted by Ophrys to locate suitable habitats from a distance within complex landscapes. Pollinators stay fixed for a while in these habitats by the local diversity of pseudo-pheromones, which increases their probability of encounter with a receptive female and hence the reproduction probability of both sexes. Conversely, pollinators disperse out of small suitable habitats once they have memorized the local diversity of sexual pseudo-pheromone bouquet or if fecundated Ophrys flowers repel pollinators, which decreases the probability of geitonogamy (plant advantage) but limit pollinator mating with locally emergent insect females, thus limiting inbreeding and favoring gene flow (pollinator advantage). Finally, we propose several research avenues that emerged according to this scenario of adaptive radiation by assymetric coevolution between Ophrys species and their pollinators.


2020 ◽  
Author(s):  
Niamh Breda O'Hara ◽  
Steven J Franks ◽  
Nolan C Kane ◽  
Silas Tittes ◽  
Joshua S Rest

Abstract BACKGROUND Pathogens are key components in natural and agricultural plant systems. There is evidence of evolutionary changes in disease susceptibility as a consequence of climate change, but we know little about the underlying genetic basis of this evolution. To address this, we took advantage of a historical seed collection of a Brassica rapa population, which we previously demonstrated evolved an increase in disease susceptibility to a necrotrophic fungal pathogen following a drought. RESULTS Previously, we combined a resurrection experiment with genome-wide sequencing of 124 pooled ancestral and descendant plants. Here, using these previously generated sequence data (Franks et al, 2016), we show that well-characterized necrotrophic fungal pathogen response (NFPR) genes have evolved, as indicated by changes in allele frequency, between ancestors and descendants, with several of them identified as extreme FST outliers. The jasmonic acid (JA) signaling pathway in particular seems to underlie the evolution of disease susceptibility, in addition to its well characterized role in plastic disease response. We identify a list of 260 genes that are both NFPR genes and are differentially expressed in response to drought, based on publicly available data. We present evidence that five of these genes evolved between ancestors and descendants, suggesting that the drought acted as the evolutionary driver, and that the accompanying increase in disease susceptibility may have been a consequence of genetic pleiotropy. CONCLUSIONS Our study provides evidence that for this population, standing variation in NFPR genes is affected by natural selection related to climate change. Our results reveal potentially important candidates that may underlie trait evolution in both crops and natural systems. Additionally, this trade-off between adaptation to biotic and abiotic stresses is an example of how climate change can have diverse and unexpected consequences.


Sign in / Sign up

Export Citation Format

Share Document