scholarly journals Population Dynamics of Hybrid State during Adaptive Therapy in Cancer

2021 ◽  
Author(s):  
Ghanendra Singh

Drug resistance emerges due to drug-induced phenotypic switching of drug-sensitive to drug-resistant subpopulations in cancer during therapy. Existing models indicate the competitive advantage of sensitive over resistant population to regulate tumor and reducing the treatment cost with increased time to progression of tumor ultimately benefiting the patient in a clinical setting. Here, we present a Lotka Volterra (LV) based population dynamics (PD) model of the drug-sensitive, drug-resistant, and transient drug-hybrid state along with phenotypic switching during adaptive therapy based on a simple cancer biomarker (CB) to decide the adaptive therapy dosage to regulate cancer. We identified that the strength of intra-competition along with phenotypic switching parameters is crucial to mediate the effectiveness of adaptive therapy and also investigated the significance of the initial fraction of subpopulations on AT. We hypothesize and predict the dynamics of drug-induced transient hybrid state playing a key role in the cancer cells undergoing metastasis.

2018 ◽  
Vol 30 (1) ◽  
pp. 139-140 ◽  
Author(s):  
Proteesh Rana ◽  
Vandana Roy ◽  
Jamshed Ahmad

Abstract We report a 26-year-old male patient diagnosed with extensively drug-resistant pulmonary tuberculosis presenting with reversible bilateral toxic optic neuropathy induced by the use of linezolid along with high-dose isoniazid. The case emphasizes the importance of recognizing toxic optic neuritis in patients on antitubercular therapy. Prompt recognition and treatment of such adverse drug reactions will reduce the associated morbidity.


2015 ◽  
Vol 35 (5) ◽  
pp. 1821-1830 ◽  
Author(s):  
Jianzhong Xi ◽  
Miyong Yun ◽  
Duckgue Lee ◽  
Moon-Nyeo Park ◽  
Eun-Ok Kim ◽  
...  

Background/Aims: Our group reported that cinnamaldehyde derivative, (E)-4-((2-(3-oxopop-1-enyl)phenoxy)methyl)pyridinium malonic acid (CB-PIC) induced apoptosis in hypoxic SW620 colorectal cancer cells via activation of AMP-activated protein kinase (AMPK) and extracellular signal regulated kinase (ERK). Herein, sensitizing effect of CB-PIC was investigated in resistant cancer cells such as paclitaxel (PT) resistant lung cancer cells (H460/PT), and Adriamycin (Adr) resistant breast cancer (MCF7/Adr) and colon cancer (HCT15/cos) cells. Methods: Various drug resistant cell lines were treated with CB-PIC, and the signalling pathway and functional assay were explored by Western blot, Rhodamine assay, FACS, RT-PCR and MTT assay. Results: We found that CB-PIC effectively exerted cytotoxicity, increased sub G1 population and the cleaved form of poly (ADP-ribose) polymerase (PARP) and caspase 9 in drug resistant cancer cells. Furthermore, CB-PIC sensitized resistant cancer cells to adriamycin via downregulation of survival proteins such as survivin, Bcl-xL and Bcl-2, along with MDR1 suppression leading to accumulation of drug in the intracellular region. Of note, CB-PIC transcriptionally decreased MDR1 expression via suppression of STAT3 and AKT signalling in three resistant cancer cells with highly expressed P-glycoprotein. Nonetheless, CB-PIC did not affect transport activity of P-glycoprotein in a short time efflux assay, while epigallocatechin gallate (EGCG) accumulated Rhodamine 123 into intracellular region of cell by direct inhibition of MDR1 transport activity. Conclusions: These data demonstrate that CB-PIC suppresses the P-glycoprotein expression through inhibition of STAT3 and AKT signalling to overcome drug resistance in chemo-resistant cancer cells as a potent chemotherapeutic sensitizer.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mariyah Pressley ◽  
Monica Salvioli ◽  
David B. Lewis ◽  
Christina L. Richards ◽  
Joel S. Brown ◽  
...  

Rapid evolution is ubiquitous in nature. We briefly review some of this quite broadly, particularly in the context of response to anthropogenic disturbances. Nowhere is this more evident, replicated and accessible to study than in cancer. Curiously cancer has been late - relative to fisheries, antibiotic resistance, pest management and evolution in human dominated landscapes - in recognizing the need for evolutionarily informed management strategies. The speed of evolution matters. Here, we employ game-theoretic modeling to compare time to progression with continuous maximum tolerable dose to that of adaptive therapy where treatment is discontinued when the population of cancer cells gets below half of its initial size and re-administered when the cancer cells recover, forming cycles with and without treatment. We show that the success of adaptive therapy relative to continuous maximum tolerable dose therapy is much higher if the population of cancer cells is defined by two cell types (sensitive vs. resistant in a polymorphic population). Additionally, the relative increase in time to progression increases with the speed of evolution. These results hold with and without a cost of resistance in cancer cells. On the other hand, treatment-induced resistance can be modeled as a quantitative trait in a monomorphic population of cancer cells. In that case, when evolution is rapid, there is no advantage to adaptive therapy. Initial responses to therapy are blunted by the cancer cells evolving too quickly. Our study emphasizes how cancer provides a unique system for studying rapid evolutionary changes within tumor ecosystems in response to human interventions; and allows us to contrast and compare this system to other human managed or dominated systems in nature.


1992 ◽  
Vol 78 (1) ◽  
pp. 5-9 ◽  
Author(s):  
Rosanna Supino ◽  
Monica Rodolfo ◽  
Mariangela Mariani ◽  
Elena Mapelli

The aim of the present study was to examine the phenotypic heterogeneity of murine and human melanoma cell lines with particular reference to anticancer drug sensitivity, growth pattern and susceptibility to lysis by lymphokine (rIL2) activated killer (LAK cells). Clones selected for a different drug sensitivity were tested to evaluate the stability of such properties after different in vitro passages. A possible relationship between drug sensitivity and LAK susceptibility was also analyzed. The results indicated a high heterogeneity in murine and in human melanoma clones for all the parameters. However, drug sensitivity, which was stable although for only a few passages in an untreated human melanoma, was highly unstable in murine naturally or drug-induced resistant cells. Finally, whereas human drug-resistant clones were sensitive to lysis by LAK cells and an inverse correlation was found with the level of drug resistance, murine clones appeared to be LAK sensitive, and no correlation was found between the level of drug resistance and LAK sensitivity. Our data indicate a different stability in drug response of human and murine cells and a different behaviour of human and murine drug-resistant cells in response to LAK lysis.


2009 ◽  
Vol 1 ◽  
pp. CMT.S2365 ◽  
Author(s):  
Olga Latinovic ◽  
Janaki Kuruppu ◽  
Charles Davis ◽  
Nhut Le ◽  
Alonso Heredia

Sustained inhibition of HIV-1, the goal of antiretroviral therapy, is often impeded by the emergence of viral drug resistance. For patients infected with HIV-1 resistant to conventional drugs from the viral reverse transcriptase and protease inhibitor classes, the recently approved entry and integration inhibitors effectively suppress HIV-1 and offer additional therapeutic options. Entry inhibitors are particularly attractive because, unlike conventional antiretrovirals, they target HIV-1 extracellularly, thereby sparing cells from both viral- and drug-induced toxicities. The fusion inhibitor enfuvirtide and the CCR5 antagonist maraviroc are the first entry inhibitors licensed for patients with drug-resistant HIV-1, with maraviroc restricted to those infected with CCR5-tropic HIV-1 (R5 HIV-1) only. Vicriviroc (another CCR5 antagonist) is in Phase III clinical trials, whereas the CCR5 antibodies PRO 140 and HGS 004 are in early stages of clinical development. Potent antiviral synergy between maraviroc and CCR5 antibodies, coupled with distinct patterns of resistance, suggest their combinations might be particularly effective in patients. In addition, given that oral administration of maraviroc achieves high drug levels in cervicovaginal fluid, combinations of maraviroc and other CCR5 inhibitors could be effective in preventing HIV-1 transmission. Moreover, since CCR5 antagonists prevent rejection of transplanted organs, maraviroc could both suppress HIV-1 and prolong organ survival for the growing number of HIV-1 patients with kidney or liver failure necessitating organ transplantation. Thus, maraviroc offers an important treatment option for patients with drug-resistant R5 HIV-1, who presently account for >50% of drug-resistance cases.


Author(s):  
Mahsa Doosthosseini ◽  
Hosam Fathy

Abstract This article analyzes the combined parameter and state identifiability for a model of a cancerous tumor's growth dynamics. The model describes the impact of drug administration on the growth of two populations of cancer cells: a drug-sensitive population and a drug-resistant population. The model's dynamic behavior depends on the underlying values of its state variables and parameters, including the initial sizes and growth rates of the drug sensitive and drug-resistant populations, respectively. The article's primary goal is to use Fisher identifiability analysis to derive and analyze the Cram´er-Rao theoretical bounds on the best-achievable accuracy with which this estimation can be performed locally. This extends previous work by the authors, which focused solely on state estimation accuracy. This analysis highlights two key scenarios where estimation accuracy is particularly poor. First, a critical drug administration rate exists where the model's state observability is lost, thereby making the independent estimation of the drug-sensitive and drug-resistant population sizes impossible. Second, a different critical drug administration rate exists that brings the overall growth rate of the drug-sensitive population to zero, thereby worsening model parameter identifiability.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4078-4078
Author(s):  
Vijay G. Ramakrishnan ◽  
Teresa Kimlinger ◽  
Jessica Haug ◽  
Timothy Halling ◽  
Linda Wellik ◽  
...  

Abstract Abstract 4078 Background: Cytokine stimulated signaling pathways contribute to multiple myeloma (MM) disease progression and in acquired resistance to current treatment options making MM an incurable malignancy. It is very well documented that HGF is a cytokine that is secreted by bone marrow stromal cells which has an autocrine and paracrine role in the disease progression in a myeloma setting. HGF binds to its receptor tyrosine kinase on MM cells, MET and this binding at the extracellular domain results in activation of MET which interacts with several of its target proteins resulting in increased survival, increased proliferation, cell cycle progression, motility, migration and invasion. In normal bone marrows, co-expression of MET and its ligand HGF is a rarity whereas co-expression is a common feature of MM. Elevated levels of HGF have been observed in serum and bone marrows of MM patients with a negative correlation to disease progression. In addition, increased HGF levels cause abnormal and reduced bone formation in patients. HGF gene levels in MM samples have been observed to be significantly up regulated in myeloma cells when compared to normal cells. Recently, studies have identified that HGF facilitates the MM cells to adhere to fibronectin, a bone marrow matrix protein, thereby positively impacting MM cell invasion and proliferation. Overall, HGF and its receptor mediated pathway influences tumor progression in myeloma by targeting several different aspects of the disease biology and hence is a very attractive and potentially very important target for improving treatment regimens in a myeloma setting. Methods: MK2461 was synthesized by Merck Inc. (Whitehouse Station, NJ, USA). Stock solutions were made using DMSO and working stock solutions were made using RPMI 1640 media containing 10% fetal bovine serum (20% serum for primary patient cells) supplemented with L-Glutamine, penicillin, and streptomycin. MTT assay was performed to study drug induced cytotoxicity and thymidine uptake was used as a measure to study differences in proliferation. Flow cytometry using Annexin V-FITC and propidium iodide (PI) was used to measure drug induced apoptosis in cell lines and patient cells. In order to study the mechanism of action of the drug, immunoblotting studies were performed on lysates made from cell lines incubated with the drug for various durations. Results: MK2461 treatment led to dose and time dependent cytotoxicity in a few myeloma cell lines (OPM2, DOX40, RPMI8226 and LR5) but not in others (MM1S, MM1R, H929 and U266). The IC50 values for the sensitive lines varied from 1μ M (OPM2) to 10μ M (DOX40, RPMI8226 and LR5). However, MK2461 significantly inhibited the proliferation of MM cells at sub IC50 concentrations in all cell lines tested except MM1S. This inhibition of proliferation was observed when cells were co-cultured with stromal cells or cytokines, namely VEGF, IL6 or HGF. Culturing MM cells with increasing doses of HGF was still unable to protect them from drug induced inhibition of proliferation. MK2461 was able to induce time dependent increase in apoptosis (as measured by annexin/PI), decrease in proliferation (as measured by BrdU assay) and induction of cell cycle arrest in the drug sensitive cell lines. This effect was not observed in MM1S cells. Exploring the mechanism of action of the drug indicated that MK2461 treatment led to down regulation of pc-Met, pGab1, pAkt and pErk in both the drug sensitive (OPM2) and drug resistant (MM1S) cell lines. However, proteins down stream of Akt in the PI3K/Akt pathway, namely pGSK3β, p70S6K, Bcl2, cyclin E and cyclin D3 were down regulated only in OPM2 cells. On the contrary, we observed up-regulation of these proteins in the drug resistant cell line offering a possible explanation for the drug resistant phenotype. We have also examined combinations of MK2461 with inhibitors of PI3K/Akt pathway. Conclusion: These studies demonstrate significant in-vitro activity of MK2461 in MM. Our results suggest the presence of two populations one very sensitive to MK2461 and one insensitive. Differential effects on the signaling pathways provide important clues to the mechanisms of action of c-met inhibitors in myeloma. The results form the basis for clinical evaluation of MK2461 in MM. Disclosures: Kumar: Celgene: Consultancy, Research Funding; Millennium: Research Funding; Merck: Consultancy, Research Funding; Novartis: Research Funding; Genzyme: Consultancy, Research Funding; Cephalon: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document