scholarly journals Fast off-rate CD229 chimeric antigen receptor T cells efficiently target multiple myeloma, spare T cells, and exhibit reduced trogocytosis

2021 ◽  
Author(s):  
Erica R. Vander Mause ◽  
Jillian M. Baker ◽  
Sabarinath V. Radhakrishnan ◽  
Patricia Davis ◽  
Jens Panse ◽  
...  

ABSTRACTT cells expressing chimeric antigen receptors have shown remarkable therapeutic activity against different types of cancer. However, their wider use has been hampered by the potential for life-threatening toxicities due to the unintended targeting of healthy cells expressing low levels of the targeted antigen. We have now developed an affinity-tuning approach for the generation of minimally modified, low-affinity antibody variants derived from existing high-affinity antibodies. Using this approach, we engineered low affinity variants of the fully human CD229-specific antibody 2D3. Parental 2D3 originally efficiently targeted multiple myeloma cells but also healthy T cells expressing low levels of CD229. We demonstrate that CAR T cells based on a low affinity variant of 2D3 maintain the parental antibody’s anti-tumor activity, but lack its targeting of healthy T cells. In addition, variant CD229 CAR T cells show reduced trogocytosis potentially augmenting CAR T cell persistence. The fast off-rate CAR produced using our affinity tuning approach eliminates a key liability of CD229 CAR T cells and paves the way for the effective and safe treatment of patients with multiple myeloma.One sentence summaryAffinity tuning approach yields low affinity CD229 CAR binding domain maintaining the parental clone’s anti-tumor activity while eliminating killing of healthy T cells, increasing CAR T cell expansion, and decreasing trogocytosis.

2020 ◽  
Vol 21 (22) ◽  
pp. 8620
Author(s):  
Alain E. Andrea ◽  
Andrada Chiron ◽  
Stéphanie Bessoles ◽  
Salima Hacein-Bey-Abina

Immunoadoptive therapy with genetically modified T lymphocytes expressing chimeric antigen receptors (CARs) has revolutionized the treatment of patients with hematologic cancers. Although clinical outcomes in B-cell malignancies are impressive, researchers are seeking to enhance the activity, persistence, and also safety of CAR-T cell therapy—notably with a view to mitigating potentially serious or even life-threatening adverse events like on-target/off-tumor toxicity and (in particular) cytokine release syndrome. A variety of safety strategies have been developed by replacing or adding various components (such as OFF- and ON-switch CARs) or by combining multi-antigen-targeting OR-, AND- and NOT-gate CAR-T cells. This research has laid the foundations for a whole new generation of therapeutic CAR-T cells. Here, we review the most promising CAR-T cell safety strategies and the corresponding preclinical and clinical studies.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3931-3931
Author(s):  
Martina Fontaine ◽  
Benjamin Demoulin ◽  
Simon Bornschein ◽  
Susanna Raitano ◽  
Steve Lenger ◽  
...  

Background The Natural Killer Group 2D (NKG2D) receptor is a NK cell activating receptor that binds to eight different ligands (NKG2DL) commonly over-expressed in cancer, including MICA and MICB. The product candidate CYAD-01 are chimeric antigen receptor (CAR) T-cells encoding the full length human NKG2D fused to the intracellular domain of CD3ζ. Data from preclinical models have shown that CYAD-01 cells specifically target solid and hematological tumors. Encouraging preliminary results from the Phase I clinical trial THINK, assessing CYAD-01 safety, showed initial signals of objective clinical responses in patients with r/r AML and MDS. The clinical development of CAR T-cells has been limited by several challenges including achieving sufficient numbers of cells for clinical application. We have previously shown that NKG2D ligands are transiently expressed on activated T cells and that robust cell yields are generated through the addition of a blocking antibody and a PI3K inhibitor during cell manufacture. Here, we investigated the ability of an optimized short hairpin RNA (shRNA) technology to modulate NKG2DL expression on CYAD-01 cells and to determine if there is an increase in the anti-tumor activity of NKG2D-based CAR T-cells (termed CYAD-02). Methods Molecular and cellular analyses identified MICA and MICB as the key NKG2DL expressed on activated T-cells and highly likely to participate in driving fratricide. In silico analysis and in vitro screening allowed the identification of a single shRNA targeting the conserved regions of MICA and MICB, thus downregulating both MICA and MICB expression. The selected shRNA was incorporated in the NKG2D-based CAR vector, creating the next-generation NKG2D-based CAR T-cell candidate, CYAD-02. In addition, truncated versions of the NKG2D receptor were generated to explore the mechanisms of action of NKG2D receptor activity in vivo. The in vivo persistence and anti-tumor activity of CYAD-02 cells was evaluated in an aggressive preclinical model of AML. Results Injection of CAR T-cells bearing truncated forms of the NKG2D-CAR in immunosuppressed mice resulted in similar persistence to the control T-cells. In contrast, CYAD-01 cells had reduced persistence, suggesting that the recognition of the NKG2DL by the NKG2D receptor could contribute to this effect. Analysis of cell phenotype upon CAR T-cell activation showed that MICA and MICB were transiently expressed on T-cells during manufacturing. These results collectively suggested that downregulating MICA and MICB expression in CYAD-01 cells could be a mean to increase CAR T-cell persistence in vivo. Candidate shRNA were screened for efficient targeting of both MICA and MICB at the mRNA and protein level. T-cells transduced with a single vector encoding for the NKG2D-based CAR and the selected shRNA targeting MICA and MICB (CYAD-02) demonstrated 3-fold increased expansion during in vitro culture in the absence of the blocking antibody used to increase cell yield during manufacture. When injected into immunosuppressed mice, CYAD-02 cells generated with the Optimab process showed 10-fold higher engraftment one week after injection and potent anti-tumor activity resulting in 2.6-fold increase of mouse survival in an aggressive AML model. Conclusions By using a single vector encoding the NKG2D-based CAR next to a shRNA targeting MICA and MICB and combined with improved cell culture methods, CYAD-02, the next-generation of NKG2D-based CAR T-cells, demonstrated enhanced in vivo persistence and anti-tumor activity. Following FDA acceptance of the IND application, a Phase 1 dose-escalation trial evaluating the safety and clinical activity of CYAD-02 for the treatment of r/r AML and MDS is scheduled to start in early 2020. Disclosures Fontaine: Celyad: Employment. Demoulin:Celyad: Employment. Bornschein:Celyad: Employment. Raitano:Celyad: Employment. Machado:Horizon Discovery: Employment. Moore:Avvinity Therapeutics: Employment, Other: Relationship at the time the work was performed; Horizon Discovery: Employment, Equity Ownership, Other: Relationship at the time the work was performed; Centauri Therapeutics: Consultancy, Other: Current relationship. Sotiropoulou:Celyad: Employment. Gilham:Celyad: Employment.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 681-681
Author(s):  
McKensie Collins ◽  
Weimin Kong ◽  
Inyoung Jung ◽  
Meng Wang ◽  
Stefan M Lundh ◽  
...  

Introduction: Chronic Lymphocytic Leukemia (CLL) is a CD19+ B-cell malignancy that accounts for approximately 25% of adult leukemia diagnoses in the developed world. While conventional therapies have some efficacy, there are few curative therapeutic options and many patients ultimately progress to relapsed or refractory disease. CD19-targeting chimeric antigen receptor (CAR) T cell therapy has provided some hope, but induces complete remission in only 26% of patients. This suboptimal response rate is believed to be due to T cell dysfunction and immune-suppression by CLL cells, the mechanisms of which are poorly understood. Results: To understand the causes of CAR T cell dysfunction in CLL we investigated the defects that CLL cells induced in normal donor CD19-targeting CAR T cells. CAR T cells were repeatedly stimulated at 5-day intervals with either primary CLL cells from patients or a CD19-expressing control cell line (aAPC). Repeat stimulation of CAR T cells with aAPCs resulted in 5.36 ± .94 population doublings after three stimulations, whereas CLL cells only evoked 2.39 ± .92 population doublings. We performed phenotyping, proliferation analysis, and cytokine analysis of stimulated CAR T cells. CLL-stimulated T cells appeared un-activated, with low levels of PD-1, LAG3, and TIM3, low levels of cytokine production, and a high proportion of non-cycling cells as measured by Ki67 staining. We first hypothesized that CLL cells induce an altered epigenetic program that prevents effector function and is stabilized by successive stimulations. To test this, we stimulated CAR T cells with CLL cells or aAPCs as indicated in Fig. 1A. CLL-stimulated CAR T cells failed to proliferate or produce cytokines, but subsequent stimulation with aAPCs rescued these functions (Fig. 1B). Further, CLL-stimulated CAR T cells did not differentiate, suggesting that CLL cells do not induce stable defects but rather insufficiently activate CAR T cells (Fig. 1C). These cells also appeared un-activated as indicated by low levels of PD-1 and Ki67. We then used flow cytometry to assess expression of costimulatory and inhibitory molecules on the primary CLL samples. We found that the levels of co-stimulatory and adhesion molecules, namely CD80/CD86 and CD54/CD58 respectively were found at low frequencies, and where present were expressed at low levels. This suggested that one mechanism behind the lack of CAR T cell effector responses may be that a lack of co-stimulation prevents proper CAR T cell targeting of these cells. Towards this, we incubated CLL cells with a murine fibroblast line expressing CD40 ligand for 24 hours with IL-4 to activate the CLL cells. We found that this activation significantly increased expression of CD80, CD86, CD54, and CD58 on the CLL cells. We then used these cells to stimulate CAR T cells in our re-stimulation assay and found that CAR T cells were able to proliferate in response to these activated CLLs (Fig. 1D). In addition, CAR T cells stimulated with activated CLL cells formed more cell-to-cell conjugates than those stimulated with un-activated CLL cells. These data suggest not only that insufficient activation of CAR T cells may be responsible for the poor response rates to CAR T cell therapy in CLL, but also implicate a need for additional co-stimulation in this CAR T cell setting. Another contributing factor may be immune suppression by CLL cells. To determine if CLL cells are immune-suppressive, we used a co-culture assay to stimulate CAR T cells with aAPCs and CLL cells mixed at known ratios. Interestingly, all mixed cultures proliferated similarly, suggesting that CLL cells did not prevent T cell activation in the presence of a strong activation signal. We also found that CLL cells are responsive to IL-2, as addition of this cytokine to culture media prolongs survival of CLL cells out to 10 days depending on the dose. This suggests that CLL cells express a functional IL-2 receptor and may be taking up IL-2 from the culture media, further impairing T cell activation. In support of this, supplementing IL-2 into our CLL/CAR T cell co-cultures rescued T cell proliferative capacity. Taken together, these data suggest that T cell dysfunction in CLL is the result of insufficient activation rather than true functional defects. Disclosures June: Novartis: Research Funding; Tmunity: Other: scientific founder, for which he has founders stock but no income, Patents & Royalties. Melenhorst:National Institutes of Health: Research Funding; Parker Institute for Cancer Immunotherapy: Research Funding; Novartis: Research Funding, Speakers Bureau; IASO Biotherapeutics, Co: Consultancy; Simcere of America, Inc: Consultancy; Shanghai Unicar Therapy, Co: Consultancy; Colorado Clinical and Translational Sciences Institute: Membership on an entity's Board of Directors or advisory committees; Genentech: Speakers Bureau; Stand Up to Cancer: Research Funding; Incyte: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1921-1921 ◽  
Author(s):  
Henia Dar ◽  
Daniel Henderson ◽  
Zinkal Padalia ◽  
Ashley Porras ◽  
Dakai Mu ◽  
...  

Abstract Autologous CAR-T cells targeting BCMA have induced robust and durable responses in patients with relapsed/refractory multiple myeloma. However, autologous cell therapies face several challenges which will likely limit the number of patients that will have access to these therapies. These limitations include manufacturing failure rates, wait time and supply constraints in addition to other factors such as reimbursement. Allogeneic CAR-T cells can potentially overcome these access challenges, and may have several other advantages over autologous therapies. Allogeneic CAR-T cells are derived from robust healthy donor T cells through a batch manufacturing process, which may result in a highly consistent product with greater potency and enable better safety management. Here we show further development and preclinical data for CTX120, an allogeneic "off the shelf" CAR-T cell targeting BCMA. CTX120 is produced using the CRISPR/Cas9 system to eliminate TCR and MHC class I, coupled with specific insertion of the CAR at the TRAC locus. CTX120 shows consistent and high percent CAR expression from this controlled insertion and exhibits target-specific cytotoxicity and cytokine secretion in response to BCMA positive cell lines. CTX120 CAR-T cells retain their cytotoxic capacity over multiple in vitro re-challenges, demonstrating durable potency and lack of exhaustion. In mouse models of multiple myeloma, CTX120 showed typical CAR-T persistence and eliminated tumors completely, resulting in long-term survival as compared to untreated animals. These data support the ongoing development of CTX120 for treatment of patients with multiple myeloma and further demonstrate the potential for our CRISPR/Cas9 engineered allogeneic CAR-T platform to generate potent CAR-T cells targeting different tumor antigens. Disclosures Dar: CRISPR Therapeutics: Employment, Equity Ownership. Henderson:CRISPR Therapeutics: Employment, Equity Ownership. Padalia:CRISPR Therapeutics: Employment, Equity Ownership. Porras:CRISPR Therapeutics: Employment, Equity Ownership. Mu:CRISPR Therapeutics: Employment, Equity Ownership. Kyungah:CRISPR Therapeutics: Employment, Equity Ownership. Police:CRISPR Therapeutics: Employment, Equity Ownership. Kalaitzidis:CRISPR Therapeutics: Employment, Equity Ownership. Terrett:CRISPR Therapeutics: Employment, Equity Ownership. Sagert:CRISPR Therapeutics: Employment, Equity Ownership.


2018 ◽  
Vol 20 (11) ◽  
pp. 1429-1438 ◽  
Author(s):  
Stephen J Bagley ◽  
Arati S Desai ◽  
Gerald P Linette ◽  
Carl H June ◽  
Donald M O’Rourke

Abstract In patients with certain hematologic malignancies, the use of autologous T cells genetically modified to express chimeric antigen receptors (CARs) has led to unprecedented clinical responses. Although progress in solid tumors has been elusive, recent clinical studies have demonstrated the feasibility and safety of CAR T-cell therapy for glioblastoma. In addition, despite formidable barriers to T-cell localization and effector function in glioblastoma, signs of efficacy have been observed in select patients. In this review, we begin with a discussion of established obstacles to systemic therapy in glioblastoma and how these may be overcome by CAR T cells. We continue with a summary of previously published CAR T-cell trials in GBM, and end by outlining the key therapeutic challenges associated with the use of CAR T cells in this disease.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 983 ◽  
Author(s):  
Ewelina Grywalska ◽  
Barbara Sosnowska-Pasiarska ◽  
Jolanta Smok-Kalwat ◽  
Marcin Pasiarski ◽  
Paulina Niedźwiedzka-Rystwej ◽  
...  

Despite the significant progress of modern anticancer therapies, multiple myeloma (MM) is still incurable for the majority of patients. Following almost three decades of development, chimeric antigen receptor (CAR) T-cell therapy now has the opportunity to revolutionize the treatment landscape and meet the unmet clinical need. However, there are still several major hurdles to overcome. Here we discuss the recent advances of CAR T-cell therapy for MM with an emphasis on future directions and possible risks. Currently, CAR T-cell therapy for MM is at the first stage of clinical studies, and most studies have focused on CAR T cells targeting B cell maturation antigen (BCMA), but other antigens such as cluster of differentiation 138 (CD138, syndecan-1) are also being evaluated. Although this therapy is associated with side effects, such as cytokine release syndrome and neurotoxicity, and relapses have been observed, the benefit–risk balance and huge potential drive the ongoing clinical progress. To fulfill the promise of recent clinical trial success and maximize the potential of CAR T, future efforts should focus on the reduction of side effects, novel targeted antigens, combinatorial uses of different types of CAR T, and development of CAR T cells targeting more than one antigen.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A146-A146
Author(s):  
Jihyun Lee ◽  
Areum Park ◽  
Jungwon Choi ◽  
Dae Gwan Yi ◽  
Hee Jung Yang ◽  
...  

BackgroundChimeric antigen receptor (CAR) -T cell therapies have proven to be effective against various liquid tumors. However, the development of CAR-T against solid tumors has been challenging due to insufficient efficacy and potential on-target off-tumor toxicities caused by low expression of tumor antigens on normal tissues. Testing various affinities of CARs has demonstrated that lower affinity CARs maintain its anti-tumor effect while minimizing safety concerns (1). In order to develop a CAR-T against solid tumors expressing Mucin1, we have screened for Mucin1 binding antibodies and tested their anti-tumor effect in vitro and in vivo. The potential of on-target off-tumor toxicity was also measured in vitro.MethodsAnti-Mucin1 human single chain variable fragments (scFv) were obtained via screening against a scFv display library. Anti-Mucin1 scFvs were incorporated into CARs and in vitro, in vivo functions against various tumor cells expressing Mucin1 were tested. For in vivo studies, tumor bearing NOG mice (HCC1954 cells) received anti-Mucin1 CAR-T cells. Therapeutic efficacy was evaluated by measuring tumor volumes. Potential on-target off-tumor toxicity against Mucin1 on normal cells was tested by investigating the killing effect of anti-Mucin1 CAR-T against cancer cell line (HCC70) and non-tumorigenic breast epithelial cell line (MCF-10A) in co-culture systemsResultsIn vitro activity of anti-Mucin1 CAR-T cells that displayed a range of affinities for Mucin1 (27nM to 320nM) showed similar cytokine secretion levels and cytotoxicity against Mucin-1 expressing tumor cell lines (HCC70 and T47D). Robust anti-tumor activity was also demonstrated in vivo against large tumors (400~500 mm3) with relatively small numbers of CAR-T cells (0.5 x 106 CAR-T cells per mouse). In vivo expansion of CAR-T cells were observed in all scFv-CAR-T cases and accompanied by close to complete regression of tumors within 25 days post CAR-T cell injection. Of the 4 scFv CAR-Ts, 2H08 (with a Kd of 94nM) was tested for activity against normal breast epithelial cells. When 2H08-CAR-T was cocultured with a mixture of HCC70 and MCF-10A cells, they preferentially killed only the Mucin1 overexpressing HCC70 cells leaving MCF-10 cells intact.ConclusionsOur study demonstrates anti-tumor activity of a novel scFv-derived CAR-T recognizing Mucin1 and its effectiveness in large pre-established tumors in vivo. We also demonstrate that 2H08-CAR-T can distinguish between target overexpressing cancer cells and normal epithelial cells, which suggests that by toning down the affinity of CAR against antigen one can improve the safety profile of solid tumor antigen targeting CAR-T cell therapies.ReferenceCastellarin M, Sands C, Da T, Scholler J, Graham K, Buza E, Fraietta J, Zhao Y, June C. A rational mouse model to detect on-target, off-tumor CAR T cell toxicity. JCI Insight 2020; 5:e136012Ethics ApprovalAll experiments were done under protocols approved by the Institutional Animal Care and Use Committee (IACUC) (Study#LGME21-011).ConsentWritten informed consent was obtained from the patient for publication of this abstract and any accompanying images. A copy of the written consent is available for review by the Editor of this journal.


Cancers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 323 ◽  
Author(s):  
Robert Berahovich ◽  
Hua Zhou ◽  
Shirley Xu ◽  
Yuehua Wei ◽  
Jasper Guan ◽  
...  

The cell-surface protein B cell maturation antigen (BCMA, CD269) has emerged as a promising target for CAR-T cell therapy for multiple myeloma. In order to create a novel BCMA CAR, we generated a new BCMA monoclonal antibody, clone 4C8A. This antibody exhibited strong and selective binding to human BCMA. BCMA CAR-T cells containing the 4C8A scFv were readily detected with recombinant BCMA protein by flow cytometry. The cells were cytolytic for RPMI8226, H929, and MM1S multiple myeloma cells and secreted high levels of IFN-γ in vitro. BCMA-dependent cytotoxicity and IFN-γ secretion were also observed in response to CHO (Chinese Hamster Ovary)-BCMA cells but not to parental CHO cells. In a mouse subcutaneous tumor model, BCMA CAR-T cells significantly blocked RPMI8226 tumor formation. When BCMA CAR-T cells were given to mice with established RPMI8226 tumors, the tumors experienced significant shrinkage due to CAR-T cell activity and tumor cell apoptosis. The same effect was observed with 3 humanized BCMA-CAR-T cells in vivo. These data indicate that novel CAR-T cells utilizing the BCMA 4C8A scFv are effective against multiple myeloma and warrant future clinical development.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 557-557
Author(s):  
Fan Yang ◽  
Hui Shi ◽  
Yang Lei ◽  
Ruiting Li ◽  
Teng Xu ◽  
...  

Abstract Background: The prognosis of refractory/relapsed aggressive B-cell non-Hodgkin lymphoma (r/r B-NHL) and multiple myeloma (r/r MM) is extremely poor, especially for the patients who failed to CAR-T cells therapy and/or ASCT. Aims: Forr/r B-NHLand r/r MM, a clinical trial using Allo-HSCT with conditioning including donor humanized CAR-T cells from the same donor (allo-CAR-T) has been registered, and the safety and efficacy will be evaluated. Methods: From September 2020 to May 2021, 11 patients were enrolled.The median age was 41 (26-64) years old. The diagnosis included high grade B-cell lymphoma (n=9) and Multiple myeloma (n=2). Seven cases were with TP53 mutations.All patients was progressive disease (PD) who failed to multi-line therapies, including chemotherapy (n=11), ASCT (n=4), autologous CAR-T (n=11).In order to further reduce the tumor burden, all patients were treated with combination therapy before transplantation. Before the trial, the expression of CD19 and/or CD22 or CD20 antigen in tumor tissue of r/r B-NHL and BCMA antigen in r/r MM patients was positive confirmed by immunohistochemistry.There were matched sibling identical donor in 1 case,matched unrelated donor in 1 case and haploidentical donor in 9 cases;Conditioning with busulfan, fludarabine-based regimen combined with allo-CAR-T was applied. Tacrolimus, mycophenolate mofetil, a short-term methotrexate and antithymocyte globulin were used for GVHD prophylaxis. The kinetics and function of CAR-T cells was monitored by quantitative PCR and flow cytometry. The efficacy was evaluated by PET-CT in r/r NHL as well as bone marrow puncture and immunofixation electrophoresis in r/r MM every 2 month after CAR-T infusion. Results: The median allo-CAR-T cells infused were 4 (range,0.78-4.88)×10 6/kg. CRS occurred in all cases with 6 cases in grade I, 1 case in grade II and 4 cases in grade III.The peak of cytokine IFN-γ and IL-6 in grade III CRS were significantly higher than those with grade I-II.No ICANS was noted. Four cases with grade III CRS were relieved with methylprednisolone. G-CSF-mobilized PBSC were infused 7 days after allo-CAR-T with the median CD34 + cells 6 (range,3-8.19)×10 6/kg. The neutrophil and platelets engraftment was achieved in all cases on median days 13 (range,11-24) and 16 (range,14-85) respectively post-transplant .All cases were donor type by STR analysis.Three cases of grade II acute GVHD were seen. CMV viremia occurred in 7 cases.For allo-CAR-T cell expansion,the peak time in vivo was on median 14(range,7-28) days after infusion.The median peak lever was 221 (range,0.191-1502)×10 6/L, which positively correlated with the number of allo-CAR-T infused. The tumor burden before transplantation was not significantly associated with allo-CAR-T expansion.Levels of allo-CAR-T cells were very low after the first 2 months of HSCT which detected persistently in 9/11(81.8%) patients, and the longest lasting time was 239 days post-transplant so far. B-cell aplasia was documented in 8/9 cases of r/r B-NHL during the follow-up. With the median follow-up 171 (range,100-295) days, 7/11(63.6%) patients survived,five cases(5/11,45.5%) achieved CR,one cases(1/11,9.1%) obtained PR, and 1 case(1/11,9.1%) of MM achieved SD and survival with tumor .Three cases(3/11,27.3%) with DLBCL died of PD whose disease status before transplantation were SD or PD, one patient(1/11,9.1%) died of infection.Significantly lower levels of Cumulative CAR T cell levels (AUC) during the first 2 month post transplantation were observed in patients who relapsed compared with those who had durable responses (P=0.0001).aGVHD were not associated directly with in vivo CAR T-cell expansion(P=0.193). Conclusion: Our preliminary results have shown that CRS is manageable and has no influence on hematopoiesis reconstitution. Allo-CAR-T cells still exist persistently post-transplant in majority of patients, which may contribute a long-term anti-lymphoma effect.With current protocol, aGVHD and viral reactivation was mild. Allo-HSCT with conditioning including allo-CAR-T cells is a safe and effective strategy for r/r B-NHL and MM. The Poor clinical efficacy was associated with high tumor burden before transplantation. [Key words] refractory/relapsed B-cell non-Hodgkin lymphoma; refractory/relapsed multiple myeloma;allogeneic CAR-T cell; allogeneic hematopoietic stem cell transplantation Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 3010-3010 ◽  
Author(s):  
Jesus G. Berdeja ◽  
Yi Lin ◽  
Noopur S. Raje ◽  
David Samuel DiCapua Siegel ◽  
Nikhil C. Munshi ◽  
...  

3010 Background: To test the safety and efficacy of the CAR T cell modality in relapsed/refractory multiple myeloma (MM), we have designed a second-generation CAR construct targeting B cell maturation antigen (BCMA) to redirect T cells to MM. bb2121 consists of autologous T cells transduced with a lentiviral vector encoding a novel CAR incorporating an anti-BCMA scFv, a 4-1BB costimulatory motif and a CD3-zeta T cell activation domain. We will report updated safety and efficacy following initial results (Berdeja et al, ENA 2016). Methods: CRB-401 (NCT02658929) is a multi-center phase 1 dose escalation trial of bb2121 in patients with relapsed and/or refractory MM who have received ≥ 3 prior regimens, including a proteasome inhibitor and an immunomodulatory agent, or are double-refractory, and have ≥ 50% BCMA expression on plasma cells. Peripheral blood mononuclear cells are collected via leukapheresis. Patients undergo lymphodepletion with Flu (30 mg/m2) / Cy (300 mg/m2) daily for 3 days then receive 1 infusion of bb2121. The study follows a standard 3+3 design with planned dose levels of 5, 15, 45, 80 and 120 x 107 CAR+ T cells. Results: As of November 18, 2016, 11 patients had been infused with bb2121 in the first 4 dose cohorts, and 9 patients had reached at least 1 month of follow-up. As of data cut-off, no dose-limiting toxicities and no > Grade 2 neurotoxicities or cytokine release syndrome (CRS) had been observed. Grade 1-2 CRS had been reported in 8/11 (73%) treated patients. All patients treated with doses of 15.0 x 107or higher remained on study and the overall response rate (ORR) in the 6 evaluable patients at these doses was 100%, including 2 sCRs and 2 MRD-negative responses (1 sC, 1 VGPR). CAR+ T cell expansion has been demonstrated consistently. An additional 6 months of follow up on previously reported results and initial data from an additional ~10 patients will be presented. Conclusions: bb2121 shows promising efficacy at dose levels above 5 x 107 CAR+ T cells, including 2 sCRs and ongoing clinical responses at 6 months, with mild and manageable CRS to date. These initial data support the potential of CAR T therapy with bb2121 as a new treatment paradigm in MM. Study sponsored by bluebird bio. Clinical trial information: NCT02658929.


Sign in / Sign up

Export Citation Format

Share Document