scholarly journals Discovery of a new species of trichomonasvirus in the human parasite Trichomonas vaginalis using transcriptome mining

2021 ◽  
Author(s):  
Austin Reid Manny ◽  
Carrie Ann Hetzel ◽  
Arshan Mizani ◽  
Max Lee Nibert

Trichomonas vaginalis is the most common nonviral cause of sexually transmitted infections globally, with an estimated quarter of a billion people infected around the world. Infection by the protozoan parasite results in the clinical syndrome trichomoniasis, which manifests as an inflammatory syndrome with acute and chronic consequences. Half or more of these parasites are themselves infected with one or more dsRNA viruses which can exacerbate the inflammatory disease. Four distinct viruses have been found in T. vaginalis to date, Trichomonas vaginalis virus 1 through 4 (or TVVs). Despite the global prevalence of these viruses, few coding-complete genome sequences have been determined. We conducted viral sequence mining in publicly available transcriptomes across 60 RNA-seq datasets representing 13 distinct T. vaginalis isolates. We assembled sequences for 27 new trichomonasvirus strains across all known TVV species, with 17 of these assemblies representing coding-complete genomes. Using a strategy of de novo sequence assembly followed by taxonomic classification, we discovered a fifth species of TVV that we term Trichomonas vaginalis virus 5 (TVV5). Six strains of TVV5 were assembled, including two coding-complete genomes. These TVV5 sequences exhibit high sequence identity to each other, but low identity to any strains of TVV1-4. Phylogenetic analysis corroborates the species-level designation. These results substantially increase the number of coding-complete TVV genome sequences and demonstrate the utility of mining publicly available transcriptomes for the discovery of RNA viruses in a critical human pathogen.

Author(s):  
Fatemeh Rahmani ◽  
Yahya Ehteshaminia ◽  
Hamid Mohammadi ◽  
Seif Ali Mahdavi

Introduction: Trichomoniasis is the most common non-viral sexually transmitted infection in the world, caused by the protozoan parasite Trichomonas vaginalis, which infects the urogenital tract of men and women. Approximately, 250 million new cases of Trichomonas vaginalis Infection are reported worldwide each year. Trichomoniasis is also considered an important HIV co-infection. The infection is often asymptomatic but can be accompanied by symptoms such as severe inflammation, itching and irritation, foamy discharge, and malodorous smell mucus, but the signs and symptoms of the disease are not sufficient for specific diagnosis. Material and Methods: In this study, the websites of PubMed, Google Scholar, SID, and Margiran were searched and related articles were reviewed. Results: Only screening and the use of highly sensitive and specific diagnostic methods can identify asymptomatic individuals. Today, the most common way to diagnose the infection is to use wet slide, Pap smear and culture methods that do not have high sensitivity and specificity. Also, due to the increase in infection and its complications, finding an efficient, rapid, and easy test to detect the parasite and differentiate Trichomoniasis vaginitis from other sexually transmitted diseases is considered important and necessary. Conclusion: Nowadays, there are several diagnostic methods that differentiate trichomoniasis infection from other sexually transmitted infections with high accuracy and sensitivity. Of course, existing diagnostic methods mostly use women's urine and vaginal samples for diagnosis, and methods that specifically diagnose the infection in men are more limited.


Author(s):  
Fatemeh Rahmani ◽  
Yahya Ehteshaminia ◽  
Hamid Mohammadi ◽  
Seif Ali Mahdavi

Introduction: Trichomonas vaginalis is a protozoan parasite that infects the urogenital tract of men and women and causes trichomoniasis, a common sexually transmitted disease in both men and women. The infection is often asymptomatic, but it can be accompanied by symptoms such as severe inflammation, itching and burning, foamy discharge and foul-smelling mucus. In one year, 250 million cases of Trichomonas vaginalis were reported worldwide. Material and Methods: In this study, the websites of PubMed, Google Scholar, SID, and Margiran were searched and related articles were reviewed.    Results: Today, the most common treatment for this disease is the use of metronidazole. However, its side effects, which include hematological and neurotoxic effects, cannot be ignored. Because of these side effects, researchers are looking for a suitable replacement for metronidazole in the treatment of trichomoniasis. Researchers' desire to use  herbs can be due to various reasons such as fewer side effects, better patient acceptance, recommendation of traditional medicine, lower prices of herbs and also compatibility with the normal physiological function of the human body. Conclusion: Considering the inhibitory effects of medicinal plants on the growth and proliferation of Trichomonas vaginalis in vitro, it can be concluded that the use of these plants can have many applications in the treatment of trichomoniasis. As a result, by studying more about their advantages and disadvantages, it is possible to make a drug that has higher therapeutic effects with fewer side effects.


Parasitology ◽  
2019 ◽  
Vol 146 (9) ◽  
pp. 1206-1216 ◽  
Author(s):  
Victor Midlej ◽  
Felipe Rubim ◽  
Wilmer Villarreal ◽  
Érica S. Martins-Duarte ◽  
Maribel Navarro ◽  
...  

AbstractTrichomonas vaginalis is a protozoan parasite that causes trichomoniasis in humans, the most prevalent non-viral sexually transmitted disease (STD). Imidazole compounds are used for the treatment of trichomoniasis, and metronidazole is the most commonly prescribed. However, these compounds can lead to parasite resistance and unwanted side effects. Therefore, there is a need for an alternative treatment for this disease. Here, we explored the potential of clotrimazole (CTZ) and zinc compounds, as well as CTZ complexed with zinc salts ([1] acetate [Zn(CTZ)2(Ac)2] and [2] a chloride [Zn(CTZ)2Cl2] complexes) against T. vaginalis. We synthesized the zinc complexed CTZ compounds and determined their concentration values that inhibited parasite growth by 50% (IC50). We used scanning and transmission electron microscopy to visualize the ultrastructural alterations induced by CTZ and their zinc complexes. The incubation of the parasites with [Zn(CTZ)2(Ac)2] complex inhibited their growth, yielding an IC50 of 4.9 µm. Moreover, there were changes in the shape of treated parasites, including the formation of surface projections that subsequently detached from the cell, in addition to changes in the hydrogenosomes, endoplasmic reticulum and Golgi complex. We found [Zn(CTZ)2(Ac)2] to be a highly effective compound against T. vaginalis in vitro, suggesting its potential utility as an alternative chemotherapy for trichomoniasis.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Shu Harn Te ◽  
Boon Fei Tan ◽  
Janelle R. Thompson ◽  
Karina Yew-Hoong Gin

Genomes of two filamentous benthic cyanobacteria were obtained from cocultures obtained from two freshwater lakes. The cultures were obtained by first growing cyanobacterial trichome on solid medium, followed by subculturing in freshwater media. Subsequent shotgun sequencing, de novo assembly, and genomic binning yielded almost complete genomes of Oscillatoriales USR 001 and Nostoc sp. MBR 210.


1996 ◽  
Vol 40 (5) ◽  
pp. 1121-1125 ◽  
Author(s):  
E M Narcisi ◽  
W E Secor

Trichomonas vaginalis is a common sexually transmitted protozoan parasite. Although often considered simply a nuisance infection, T. vaginalis has been implicated in premature rupture of placental membranes and increases in the risk of acquiring human immunodeficiency virus. Metronidazole, a 5-nitroimidazole, is currently the drug of choice to treat T. vaginalis infection. Because some patients have severe reactions to metronidazole and others are infected with metronidazole-resistant T. vaginalis, we were prompted to investigate alternative therapies. Tinidazole, another 5-nitroimidazole used in other countries to treat T. vaginalis infections, and furazolidone, a nitrofuran presently used to treat giardiasis and infections with some anaerobic enteric bacteria, were investigated for effectiveness against 9 metronidazole-susceptible and 12 metronidazole-resistant T. vaginalis patient isolates. The in vitro aerobic and anaerobic minimum lethal concentrations (MLC) and the time for drug efficacy were determined. Tinidazole killed the metronidazole-susceptible isolates at a low MLC but was effective against only 4 of the 12 metronidazole-resistant isolates. In contrast, furazolidone was effective at a low MLC for all isolates. When tinidazole was effective, it required > 6 h to kill trichomonads. However, furazolidone killed both metronidazole-susceptible and resistant trichomonads within 2 to 3 h of exposure. These data suggest that furazolidone may be a good candidate for treating metronidazole-resistant trichomoniasis and that further investigation of this drug is warranted.


2021 ◽  
Vol 2 (3) ◽  
pp. 340-352
Author(s):  
Andrea Karime González Silva ◽  
Nadia Velázquez Hernández ◽  
Alma Rosa Pérez Álamos ◽  
Marisela Aguilar Durán

La tricomoniasis representa el 30% de las infecciones de transmisión sexual no virales en el mundo; su agente etiológico es el protozoario parásito Trichomonas vaginalis. Frecuentemente la infección es asintomática, lo que dificulta su tratamiento y detección y facilita su transmisión. La implementación de pruebas específicas, sensibles y económicamente accesibles que permitan mejorar la capacidad de detección de este patógeno, es importante ya que los métodos de diagnóstico que se utilizan tradicionalmente (examen en fresco, cultivo vaginal, papanicolaou, etc.) no cumplen con estos requisitos. En este proyecto se incluyeron 197 mujeres sexualmente activas entre los 17 y los 67 años; se tomaron muestras cérvicovaginales para realizar examen en fresco, tinción Papanicolaou y para la identificación molecular se amplificó una región conservada en el gen de adhesina AP65 de T. vaginalis. Se obtuvo una prevalencia del 35.5% de Trichomonas vaginalis identificada por de PCR de punto final, confirmando que esta última es la técnica con mayor sensibilidad y especificidad con respecto al examen en fresco y Papanicolaou.   Trichomoniasis represents 30% of non-viral sexually transmitted infections worldwide; its etiological agent is the protozoan parasite Trichomonas vaginalis. The infection is often asymptomatic, which makes it difficult to treat and detect and facilitates its transmission. The implementation of specific, sensitive and economically accessible tests to improve the detection capacity of this pathogen is important because the diagnostic methods traditionally used (fresh examination, vaginal culture, pap smears, etc.) do not meet these requirements. 197 sexually active women between 17 and 67 years of age were included in this project; cervicovaginal samples were taken for fresh test, Papanicolaou staining, and for molecular identification, a conserved region in the AP65 adhesin gene of T. vaginalis was amplified. A prevalence of 35.5% of Trichomonas vaginalis identified by end-point PCR was obtained, confirming that the latter is the technique with greater sensitivity and specificity with respect to the fresh test and Papanicolaou.


1984 ◽  
Vol 160 (4) ◽  
pp. 987-1000 ◽  
Author(s):  
C C Wang ◽  
H W Cheng

Trichomonas vaginalis, a human protozoan parasite known to lack the capability of synthesizing purine and pyrimidine nucleotides de novo, was found also incapable of converting its ribonucleotides to deoxyribonucleotides. The only apparent means of providing deoxyribonucleotides for DNA synthesis relies on salvaging exogenous deoxyribonucleosides by a deoxyribonucleoside phosphotransferase activity in the T. vaginalis 10(5) g pelletable fraction. The activity, constituted by at least two isozymes I and II, can be solubilized by Triton X-100, has a pH optimum of 5.0-6.0, and recognizes only thymidine, deoxyadenosine, deoxyguanosine, and deoxycytidine as the phosphate acceptor. TMP, dAMP, dGMP, dCMP, dUMP, FdUMP, and p-nitrophenylphosphate can serve as phosphate donors. Enzyme I has been purified 10-fold by DEAE-Sepharose chromatography and Sephacryl 200 filtration, and is totally freed of the acid phosphatase of T. vaginalis. It has an estimated molecular weight of 200,000 and Km values of 2-3 mM for the four deoxyribonucleosides, which act on each other as competitive inhibitors. It also possesses phosphatase activity capable of hydrolyzing p-nitrophenylphosphate with a Michaelis constant of 0.74 mM. The rates of hydrolysis are enhanced by thymidine, which suggests that the latter may be the preferred phosphate acceptor, and Enzyme I may be, thus, more a transferase than a phosphatase. This enzyme could be a potential target for antitrichomonial chemotherapy.


Open Biology ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 200192 ◽  
Author(s):  
Suhani B. Bhakta ◽  
Jose A. Moran ◽  
Frances Mercer

Trichomoniasis is the third most common sexually transmitted infection in humans and is caused by the protozoan parasite, Trichomonas vaginalis ( Tv ). Pathogenic outcomes are more common in women and generally include mild vaginitis or cervicitis. However, more serious effects associated with trichomoniasis include adverse reproductive outcomes. Like other infectious agents, pathogenesis from Tv infection is predicted to be the result of both parasite and host factors. At the site of infection, neutrophils are the most abundant immune cells present and probably play key roles in both parasite clearance and inflammatory pathology. Here, we discuss the evidence that neutrophils home to the site of Tv infection, kill the parasite, and that in some circumstances, parasites possibly evade neutrophil-directed killing. In vitro , the parasite is killed by neutrophils using a novel antimicrobial mechanism called trogocytosis, which probably involves both innate and adaptive immunity. While mechanisms of evasion are mostly conjecture at present, the persistence of Tv infections in patients argues strongly for their existence. Additionally, many strains of Tv harbour microbial symbionts Mycoplasma hominis or Trichomonasvirus , which are both predicted to impact neutrophil responses against the parasite. Novel research tools, especially animal models, will help to reveal the true outcomes of many factors involved in neutrophil- Tv interactions during trichomoniasis.


2018 ◽  
Author(s):  
Jully Pinheiro ◽  
Jacob Biboy ◽  
Waldemar Vollmer ◽  
Robert P. Hirt ◽  
Jeremy R. Keown ◽  
...  

AbstractTrichomonas vaginalisis a human eukaryotic pathogen and the causative agent of trichomoniasis, the most prevalent non-viral sexually transmitted infection worldwide. This extracellular protozoan parasite is intimately associated with the human vaginal mucosa and microbiota but key aspects of the complex interactions between the parasite and the vaginal bacteria remain elusive. We report thatT. vaginalishas acquired, by lateral gene transfer from bacteria, genes encoding peptidoglycan hydrolases of the NlpC/P60 family. Two of theT. vaginalisenzymes were active against bacterial peptidoglycan, retaining the active site fold and specificity as DL-endopeptidases. The endogenous NlpC/P60 genes are transcriptionally up regulated inT. vaginaliswhen in the presence of bacteria. The over-expression of an exogenous copy produces a remarkable phenotype where the parasite is capable of competing out bacteria from mixed cultures, consistent with the biochemical activity of the enzymein vitro. Our study highlights the relevance of the interactions of this eukaryotic pathogen with bacteria, a poorly understood aspect on the biology of this important human parasite.Author summaryTrichomonas vaginalisis a protozoan parasite that causes a very common sexually transmitted disease known as trichomoniasis. This extracellular parasite resides in the vagina where it is in close association with the mucosa and the local microbiota. Very little is known about the nature of the parasite-bacteria interactions. Here, we report that this parasite had acquired genes from bacteria which retained their original function producing active enzymes capable of degrading peptidoglycan, a polymer that is chemically unique to the cell envelope of bacteria. Our results indicate that these enzymes help the parasite compete out bacteria in mixed cultures. These observations suggest that these enzymes may be critical for the parasite to establish infection in the vagina, a body site that is densely colonised with bacteria. Our study further highlights the importance of understanding the interactions between pathogens and microbiota, as the outcomes of these interactions are increasingly understood to have important implications on health and disease.


2018 ◽  
Vol 86 (8) ◽  
Author(s):  
Niha Phukan ◽  
Anna E. S. Brooks ◽  
Augusto Simoes-Barbosa

ABSTRACTTrichomoniasis, a prevalent sexually transmitted infection, is commonly symptomatic in women. The causative agent isTrichomonas vaginalis, an extracellular protozoan parasite. The host-protective mechanisms and molecules of vaginal lactobacilli that counteract this pathogen are largely unknown. This study examines the inhibition promoted byLactobacillus gasseriagainst the adhesion ofT. vaginalisto host cells, a critical virulence aspect of this pathogen. We observed that the vaginal strainL. gasseriATCC 9857 is highly inhibitory by various contact-dependent mechanisms and that surface proteins are largely responsible for this inhibitory phenotype. We found that the aggregation-promoting factor APF-2 from these bacteria significantly contributes to inhibition of the adhesion ofT. vaginalisto human vaginal ectocervical cells. Understanding the molecules and mechanisms used by lactobacilli to protect the host againstT. vaginalismight help in the development of novel and specific therapeutic strategies that take advantage of the natural microbiota.


Sign in / Sign up

Export Citation Format

Share Document