scholarly journals Islet primary cilia motility controls insulin secretion

2021 ◽  
Author(s):  
Jung Hoon Cho ◽  
Zipeng A Li ◽  
Lifei Zhu ◽  
Brian Muegge ◽  
Henry Roseman ◽  
...  

Primary cilia are specialized cell-surface organelles that mediate sensory perception and, in contrast to motile cilia and flagella, are thought to lack motility function. Here we show that primary cilia in pancreatic beta cells exhibit movement that is required for glucose-dependent insulin secretion. Beta cell cilia contain motor proteins conserved from those found in classic motile cilia, and their 3D motion is dynein-driven and dependent on ATP and glucose metabolism. Inhibition of cilia motion blocks beta cell calcium influx and insulin secretion. Beta cells from humans with type 2 diabetes have altered expression of cilia motility genes. Our findings redefine primary cilia as dynamic structures possessing both sensory and motile function and establish that pancreatic beta cell cilia movement plays a critical role in controlling insulin secretion.

2018 ◽  
Vol 52 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Eiji Yamato

Abstract Objective. Histone deacytylase inhibitors (HDACis) inhibit the deacetylation of the lysine residue of proteins, including histones, and regulate the transcription of a variety of genes. Recently, HDACis have been used clinically as anti-cancer drugs and possible anti-diabetic drugs. Even though HDACis have been proven to protect the cytokine-induced damage of pancreatic beta cells, evidence also shows that high doses of HDACis are cytotoxic. In the present study, we, therefore, investigated the eff ect of HDACis on insulin secretion in a pancreatic beta cell line. Methods. Pancreatic beta cells MIN6 were treated with selected HDACis (trichostatin A, TSA; valproic acid, VPA; and sodium butyrate, NaB) in medium supplemented with 25 mM glucose and 13% heat-inactivated fetal bovine serum (FBS) for indicated time intervals. Protein expression of Pdx1 and Mafa in MIN6 cells was demonstrated by immunohistochemistry and immunocytochemistry, expression of Pdx1 and Mafa genes was measured by quantitative RT-PCR method. Insulin release from MIN6 cells and insulin cell content were estimated by ELISA kit. Superoxide production in MIN6 cells was measured using a Total ROS/Superoxide Detection System. Results. TSA, VPA, and NaB inhibited the expression of Pdx1 and Mafa genes and their products. TSA treatment led to beta cell malfunction, characterized by enhanced insulin secretion at 3 and 9 mM glucose, but impaired insulin secretion at 15 and 25 mM glucose. Th us, TSA induced dysregulation of the insulin secretion mechanism. TSA also enhanced reactive oxygen species production in pancreatic beta cells. Conclusions. Our results showed that HDACis caused failure to suppress insulin secretion at low glucose concentrations and enhance insulin secretion at high glucose concentrations. In other words, when these HDACis are used clinically, high doses of HDACis may cause hypoglycemia in the fasting state and hyperglycemia in the fed state. When using HDACis, physicians should, therefore, be aware of the capacity of these drugs to modulate the insulin secretory capacity of pancreatic beta cells.


1989 ◽  
Vol 257 (6) ◽  
pp. C1171-C1176 ◽  
Author(s):  
H. H. Keahey ◽  
A. E. Boyd ◽  
D. L. Kunze

The mechanisms by which norepinephrine and epinephrine activate alpha 2-adrenergic receptors and inhibit insulin release from the pancreatic beta-cell (19, 21, 23) are not yet clear but may involve modulation at several sites. Because intracellular calcium has been implicated in the secretory process, it has been suggested that catecholamines may inhibit secretion by blocking calcium influx, thus reducing the free cytosolic calcium concentration (23). The present study examines the effects of epinephrine, norepinephrine, and clonidine on calcium current in an SV40-transformed hamster beta-cell line (HIT cells). Under voltage-clamp conditions, calcium currents were reversibly inhibited by norepinephrine, epinephrine, and clonidine in the low nanomolar range. The effects were blocked by 1) the alpha 2-antagonist yohimbine, 2) preincubation of the cells with pertussis toxin (PTX), and 3) guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), the nonhydrolyzable GDP analogue that competitively inhibits the interaction of GTP with G proteins. In contrast, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) caused irreversible blockade by catecholamines. These effects could not be overcome by adenosine 3',5'-cyclic monophosphate (cAMP), suggesting that the adenylate cyclase pathway is not involved in the G protein coupling with the channels. These studies show that catecholamines inhibit calcium currents in beta-cells through an alpha 2-adrenoreceptor PTX-sensitive G protein pathway and could inhibit insulin secretion by this mechanism.


1999 ◽  
Vol 22 (2) ◽  
pp. 113-123 ◽  
Author(s):  
T Miki ◽  
K Nagashima ◽  
S Seino

ATP-sensitive K+ channels (KATP channels) play important roles in many cellular functions by coupling cell metabolism to electrical activity. The KATP channels in pancreatic beta-cells are thought to be critical in the regulation of glucose-induced and sulfonylurea-induced insulin secretion. Until recently, however, the molecular structure of the KATP channel was not known. Cloning members of the novel inwardly rectifying K+ channel subfamily Kir6.0 (Kir6.1 and Kir6.2) and the sulfonylurea receptors (SUR1 and SUR2) has clarified the molecular structure of KATP channels. The pancreatic beta-cell KATP channel comprises two subunits: a Kir6.2 subunit and an SUR1 subunit. Molecular biological and molecular genetic studies have provided insights into the physiological and pathophysiological roles of the pancreatic beta-cell KATP channel in insulin secretion.


ChemTexts ◽  
2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Sigurd Lenzen

AbstractThe biosynthesis of insulin takes place in the insulin-producing beta cells that are organized in the form of islets of Langerhans together with a few other islet cell types in the pancreas organ. The signal for glucose-induced insulin secretion is generated in two pathways in the mitochondrial metabolism of the pancreatic beta cells. These pathways are also known as the triggering pathway and the amplifying pathway. Glucokinase, the low-affinity glucose-phosphorylating enzyme in beta cell glycolysis acts as the signal-generating enzyme in this process. ATP ultimately generated is the crucial second messenger in this process. Insulin-producing pancreatic beta cells are badly protected against oxidative stress resulting in a particular vulnerability of this islet cell type due to low expression of H2O2-inactivating enzymes in various subcellular locations, specifically in the cytosol, mitochondria, peroxisomes and endoplasmic reticulum. This is in contrast to the glucagon-producing alpha cells and other islet cell types in the islets that are well equipped with these H2O2-inactivating enzymes. On the other hand the membranes of the pancreatic beta cells are well protected against lipid peroxidation and ferroptosis through high level expression of glutathione peroxidase 4 (GPx4) and this again is at variance from the situation in the non-beta cells of the islets with a low expression level of GPx4. The weak antioxidative defence equipment of the pancreatic beta cells, in particular in states of disease, is very dangerous because the resulting particular vulnerability endangers the functionality of the beta cells, making people prone to the development of a diabetic metabolic state.


2021 ◽  
Author(s):  
Nai-Wen Chi ◽  
Travis Eisemann ◽  
Tsung-Yin J Yeh ◽  
Swati Roy ◽  
Tyler J Chi ◽  
...  

Insulin secretion in the pancreatic beta cell is rate-limited by glucokinase (GCK), the glucose sensor that catalyzes the first step of glucose metabolism. GCK consists of two lobes connected by a flexible hinge that allows the kinase to sample a spectrum of conformations ranging from the active, closed form to several inactive, less-compact forms. Activating GCK mutations can cause hyperinsulinemia and hypoglycemia in infants. A similar phenotype is exhibited in mice deficient in tankyrase (TNKS), prompting us to investigate whether TNKS might modulate the glucose-sensing function of GCK. We found that TNKS colocalizes and directly interacts with GCK. Their interaction is mediated by two ankyrin-repeat clusters (ARC-2 and -5) in TNKS and a tankyrase-binding motif (TBM, aa 63-68) in the GCK hinge. This interaction is conformation sensitive: human GCK variants that cause hyperglycemia (V62M) or hypoglycemia (S64Y) enhance or diminish the interaction respectively, even though they have no impact on TNKS interaction in the context of a GCK peptide (V62M) or a peptide library (S64Y). Moreover, the TNKS-GCK interaction is inhibited by high concentrations of glucose, which are known to stabilize GCK in the active (closed, glucose-avid) conformation. Conversely, glucose phosphorylation by GCK in vitro is inhibited by TNKS. To validate this in vitro inhibitory effect in the MIN6 beta cells, we showed that glucose-stimulated insulin secretion is suppressed upon stabilization of the TNKS protein and conversely is enhanced upon TNKS knockdown. Based on these findings as well as by contrasting with hexokinase-2, we propose that TNKS is a physiological GCK inhibitor in pancreatic beta cells that acts by trapping the kinase in an open (inactive) conformation.


2019 ◽  
Vol 243 (1) ◽  
pp. 1-14 ◽  
Author(s):  
David W Scoville ◽  
Kristin Lichti-Kaiser ◽  
Sara A Grimm ◽  
Anton M Jetten

The Krüppel-like zinc finger transcription factor Gli-similar 3 (GLIS3) plays a critical role in the regulation of pancreatic beta cells, with global Glis3-knockout mice suffering from severe hyperglycemia and dying by post-natal day 11. In addition, GLIS3 has been shown to directly regulate the early endocrine marker Ngn3, as well as Ins2 gene expression in mature beta cells. We hypothesize that GLIS3 regulates several other genes critical to beta cell function, in addition to Ins2, by directly binding to regulatory regions. We therefore generated a pancreas-specific Glis3 deletion mouse model (Glis3Δ panc ) using a Pdx1-driven Cre mouse line. Roughly 20% of these mice develop hyperglycemia by 8 weeks and lose most of their insulin expression. However, this did not appear to be due to loss of the beta cells themselves, as no change in cell death was observed. Indeed, presumptive beta cells appeared to persist as PDX1+/INS−/MAFA−/GLUT2− cells. Islet RNA-seq analysis combined with GLIS3 ChIP-seq analysis revealed apparent direct regulation of a variety of diabetes-related genes, including Slc2a2 and Mafa. GLIS3 binding near these genes coincided with binding for other islet-enriched transcription factors, indicating these are distinct regulatory hubs. Our data indicate that GLIS3 regulates not only insulin expression, but also several additional genes critical for beta cell function.


2000 ◽  
Vol 164 (3) ◽  
pp. 307-314 ◽  
Author(s):  
K Iizuka ◽  
H Nakajima ◽  
A Ono ◽  
K Okita ◽  
J Miyazaki ◽  
...  

Glucose-6-phosphatase (G-6-Pase) hydrolyzes glucose-6-phosphate to glucose, reciprocal with the so-called glucose sensor, glucokinase, in pancreatic beta cells. To study the role of G-6-Pase in glucose-stimulated insulin secretion from beta cells, we have introduced rat G-6-Pase catalytic subunit cDNA and have established permanent clones with 3-, 7- and 24-fold G-6-Pase activity of the mouse beta-cell line, MIN6. In these clones, glucose usage and ATP production in the presence of 5.5 or 25 mM glucose were reduced, and glucose-stimulated insulin secretion was decreased in proportion to the increased G-6-Pase activity. In addition, insulin secretory capacity in response to d-fructose and pyruvate was unchanged; however, 25 mM glucose-stimulated insulin secretion and intracellular calcium response were completely inhibited. In the clone with 24-fold G-6-Pase activity, changes in intracellular NAD(P)H autofluorescence in response to 25 mM glucose were reduced, but the changes with 20 mM fructose and 20 mM pyruvate were not altered. Stable overexpression of G-6-Pase in beta cells resulted in attenuation of the overall glucose-stimulated metabolic responses corresponding to the degree of overexpression. This particular experimental manipulation shows that the possibility exists of modulating glucose-stimulated insulin release by thoroughly altering glucose cycling at the glucokinase/G-6-Pase step.


2021 ◽  
Vol 13 (600) ◽  
pp. eabb1038
Author(s):  
Wing Yan So ◽  
Wai Nam Liu ◽  
Adrian Kee Keong Teo ◽  
Guy A. Rutter ◽  
Weiping Han

The paired box 6 (PAX6) transcription factor is crucial for normal pancreatic islet development and function. Heterozygous mutations of PAX6 are associated with impaired insulin secretion and early-onset diabetes mellitus in humans. However, the molecular mechanism of PAX6 in controlling insulin secretion in human beta cells and its pathophysiological role in type 2 diabetes (T2D) remain ambiguous. We investigated the molecular pathway of PAX6 in the regulation of insulin secretion and the potential therapeutic value of PAX6 in T2D by using human pancreatic beta cell line EndoC-βH1, the db/db mouse model, and primary human pancreatic islets. Through loss- and gain-of-function approaches, we uncovered a mechanism by which PAX6 modulates glucose-stimulated insulin secretion (GSIS) through a cAMP response element–binding protein (CREB)/Munc18-1/2 pathway. Moreover, under diabetic conditions, beta cells and pancreatic islets displayed dampened PAX6/CREB/Munc18-1/2 pathway activity and impaired GSIS, which were reversed by PAX6 replenishment. Adeno-associated virus–mediated PAX6 overexpression in db/db mouse pancreatic beta cells led to a sustained amelioration of glycemic perturbation in vivo but did not affect insulin resistance. Our study highlights the pathophysiological role of PAX6 in T2D-associated beta cell dysfunction in humans and suggests the potential of PAX6 gene transfer in preserving and restoring beta cell function.


2021 ◽  
Vol 22 (3) ◽  
pp. 1000
Author(s):  
Pauline Chabosseau ◽  
Guy A. Rutter ◽  
Steven J. Millership

Diabetes mellitus now affects more than 400 million individuals worldwide, with significant impacts on the lives of those affected and associated socio-economic costs. Although defects in insulin secretion underlie all forms of the disease, the molecular mechanisms which drive them are still poorly understood. Subsets of specialised beta cells have, in recent years, been suggested to play critical roles in “pacing” overall islet activity. The molecular nature of these cells, the means through which their identity is established and the changes which may contribute to their functional demise and “loss of influence” in both type 1 and type 2 diabetes are largely unknown. Genomic imprinting involves the selective silencing of one of the two parental alleles through DNA methylation and modified imprinted gene expression is involved in a number of diseases. Loss of expression, or loss of imprinting, can be shown in mouse models to lead to defects in beta cell function and abnormal insulin secretion. In the present review we survey the evidence that altered expression of imprinted genes contribute to loss of beta cell function, the importance of beta cell heterogeneity in normal and disease states, and hypothesise whether there is a direct link between the two.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0241349
Author(s):  
Sajid Ali Rajput ◽  
Munazza Raza Mirza ◽  
M. Iqbal Choudhary

Beta cell apoptosis induced by proinflammatory cytokines is one of the hallmarks of diabetes. Small molecules which can inhibit the cytokine-induced apoptosis could lead to new drug candidates that can be used in combination with existing therapeutic interventions against diabetes. The current study evaluated several effects of bergenin, an isocoumarin derivative, in beta cells in the presence of cytokines. These included (i) increase in beta cell viability (by measuring cellular ATP levels) (ii) suppression of beta cell apoptosis (by measuring caspase activity), (iii) improvement in beta cell function (by measuring glucose-stimulated insulin secretion), and (iv) improvement of beta cells mitochondrial physiological functions. The experiments were carried out using rat beta INS-1E cell line in the presence or absence of bergenin and a cocktail of proinflammatory cytokines (interleukin-1beta, tumor necrosis factor-alpha, and interferon- gamma) for 48 hr. Bergenin significantly inhibited beta cell apoptosis, as inferred from the reduction in the caspase-3 activity (IC50 = 7.29 ± 2.45 μM), and concurrently increased cellular ATP Levels (EC50 = 1.97 ± 0.47 μM). Bergenin also significantly enhanced insulin secretion (EC50 = 6.73 ± 2.15 μM) in INS-1E cells, presumably because of the decreased nitric oxide production (IC50 = 6.82 ± 2.83 μM). Bergenin restored mitochondrial membrane potential (EC50 = 2.27 ± 0.83 μM), decreased ROS production (IC50 = 14.63 ± 3.18 μM), and improved mitochondrial dehydrogenase activity (EC50 = 1.39 ± 0.62 μM). This study shows for the first time that bergenin protected beta cells from cytokine-induced apoptosis and restored insulin secretory function by virtue of its anti-inflammatory, antioxidant and anti-apoptotic properties. To sum up, the above mentioned data highlight bergenin as a promising anti-apoptotic agent in the context of diabetes.


Sign in / Sign up

Export Citation Format

Share Document