scholarly journals Fine mapping of goat polledness variant in six Chinese native breeds

2021 ◽  
Author(s):  
Yong Li ◽  
tao chen ◽  
Manman Yang ◽  
hu han ◽  
Dan Jiang ◽  
...  

Background: The genetic mechanism of goat polledness has been studied for decades, but identifying causative variants and functional genes remains challenging. Results: Using a genome-wide association study (GWAS), we identified a significant striking locus for polledness in two different goat breeds. To reduce the linkage disequilibrium among variants for localizing causative variants in the finer region, we sequenced 79 goats from six Chinese native breeds (Jining Gray, Matou, Guizhou black, Yunnan black bone, Chaidamu, and Ujumqin) and identified 483.5 kb CNV (150,334,567-150,818,099) translocated into the previously identified 11.7 kb polled intersex syndrome region, which was consistent with previous research using intersex goat populations. Within the 483.5 kb CNV, a ~322 bp horn-specific element, similar to the superfamily of tRNA-derived families of SINEs, located at the first intron of the ERG gene was identified. The results of the GO enrichment analysis showed that the Horn-SINE element-associated genes were involved in both nervous system and head development. Finally, we used RNA sequencing to investigate gene expression profiles in the horn bud and skin tissues of horned and polled goats. We identified 1077 and 1222 differentially expressed genes between the horn bud and skin tissue in polled and horned goats, respectively. We also identified 367 differentially expressed genes in horn buds between polled and horned animals and found that the two CNV-related genes, ERG and FOXL2 were upregulated in the horn bud of polled goats. Gene functional enrichment analysis demonstrated that the downregulated genes in the horn bud of polled goats were enriched in skeletal system development, whereas the upregulated genes were significantly overexpressed in muscle tissue development.

2020 ◽  
Author(s):  
Gaochen Lan ◽  
Xiaoling Yu ◽  
Yanna Zhao ◽  
Jinjian Lan ◽  
Wan Li ◽  
...  

Abstract Background: Breast cancer is the most common malignant disease among women. At present, more and more attention has been paid to long non-coding RNAs (lncRNAs) in the field of breast cancer research. We aimed to investigate the expression profiles of lncRNAs and construct a prognostic lncRNA for predicting the overall survival (OS) of breast cancer.Methods: The expression profiles of lncRNAs and clinical data with breast cancer were obtained from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were screened out by R package (limma). The survival probability was estimated by the Kaplan‑Meier Test. The Cox Regression Model was performed for univariate and multivariate analysis. The risk score (RS) was established on the basis of the lncRNAs’ expression level (exp) multiplied regression coefficient (β) from the multivariate cox regression analysis with the following formula: RS=exp a1 * β a1 + exp a2 * β a2 +……+ exp an * β an. Functional enrichment analysis was performed by Metascape.Results: A total of 3404 differentially expressed lncRNAs were identified. Among them, CYTOR, MIR4458HG and MAPT-AS1 were significantly associated with the survival of breast cancer. Finally, The RS could predict OS of breast cancer (RS=exp CYTOR * β CYTOR + exp MIR4458HG * β MIR4458HG + exp MAPT-AS1 * β MAPT-AS1). Moreover, it was confirmed that the three-lncRNA signature could be an independent prognostic biomarker for breast cancer (HR=3.040, P=0.000).Conclusions: This study established a three-lncRNA signature, which might be a novel prognostic biomarker for breast cancer.


2021 ◽  
Author(s):  
Nana Yang ◽  
Qianghua Wang ◽  
Biao Ding ◽  
Yinging Gong ◽  
Yue Wu ◽  
...  

Abstract Background: The accumulation of ROS resulting from upregulated levels of oxidative stress is commonly implicated in preeclampsia (PE). Ferroptosis is a novel form of iron-dependent cell death instigated by lipid peroxidation likely plays important role in PE pathogenesis. This study aims to investigate expression profiles and functions of the ferroptosis-related genes (FRGs) in early- and late-onset preeclampsia.Methods: The gene expression data and clinical information were downloaded from GEO database. The “limma” R package was used for screening differentially expressed genes. GO(Gene Ontology), Kyoto Encyclopedia of Genes and Genomes(KEGG) and protein protein interaction (PPI) network analyses were conducted to investigate the bioinformatics functions and molecular interactions of significantly different FRGs. Quantitative real-time reverse transcriptase PCR was used to verify the expression of hub FRGs in PE.Results: A total number of 4,215 DEGs were identified between EOPE and preterm cases and 3,356 DEGs were found between EOPE and LOPE subtypes. 20 significantly different FRGs were identified in EOPE, while only 3 in LOPE. Functional enrichment analysis revealed that the differentially expressed FRGs was mainly involved in EOPE and enriched in hypoxia- and iron-related pathways, such as response to hypoxia, iron homeostasis and iron ion binding process. The PPI network analysis and verification by RT-qPCR resulted in the identification of the following six interesting FRGs: FTH1, HIF1A, FTL, IREB2, MAPK8 and PLIN2. Conclusions: EOPE and LOPE owned distinct underlying molecular mechanisms and ferroptosis may be mainly implicated in pathogenesis of EOPE. Further studies are necessary for deeper inquiry into placental ferroptosis and its role in the pathogenesis of EOPE.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 455 ◽  
Author(s):  
Qingyuan Ouyang ◽  
Shenqiang Hu ◽  
Guosong Wang ◽  
Jiwei Hu ◽  
Jiaman Zhang ◽  
...  

To date, research on poultry egg production performance has only been conducted within inter or intra-breed groups, while those combining both inter- and intra-breed groups are lacking. Egg production performance is known to differ markedly between Sichuan white goose (Anser cygnoides) and Landes goose (Anser anser). In order to understand the mechanism of egg production performance in geese, we undertook this study. Here, 18 ovarian stromal samples from both Sichuan white goose and Landes goose at the age of 145 days (3 individuals before egg production initiation for each breed) and 730 days (3 high- and low egg production individuals during non-laying periods for each breed) were collected to reveal the genome-wide expression profiles of ovarian mRNAs and lncRNAs between these two geese breeds at different physiological stages. Briefly, 58, 347, 797, 777, and 881 differentially expressed genes (DEGs) and 56, 24, 154, 105, and 224 differentially expressed long non-coding RNAs (DElncRNAs) were found in LLD vs. HLD (low egg production Landes goose vs. high egg production Landes goose), LSC vs. HSC (low egg production Sichuan White goose vs. high egg production Sichuan white goose), YLD vs. YSC (young Landes goose vs. young Sichuan white goose), HLD vs. HSC (high egg production Landes goose vs. high egg production Sichuan white goose), and LLD vs. LSC (low egg production Landes goose vs. low egg production Sichuan white goose) groups, respectively. Functional enrichment analysis of these DEGs and DElncRNAs suggest that the “neuroactive ligand–receptor interaction pathway” is crucial for egg production, and particularly, members of the 5-hydroxytryptamine receptor (HTR) family affect egg production by regulating ovarian metabolic function. Furthermore, the big differences in the secondary structures among HTR1F and HTR1B, HTR2B, and HTR7 may lead to their different expression patterns in goose ovaries of both inter- and intra-breed groups. These results provide novel insights into the mechanisms regulating poultry egg production performance.


2020 ◽  
Vol 9 (2) ◽  
pp. LMT30
Author(s):  
Chuanli Ren ◽  
Weixiu Sun ◽  
Xu Lian ◽  
Chongxu Han

Aim: To screen and identify key genes related to the development of smoking-induced lung adenocarcinoma (LUAD). Materials & methods: We obtained data from the GEO chip dataset GSE31210. The differentially expressed genes were screened by GEO2R. The protein interaction network of differentially expressed genes was constructed by STRING and Cytoscape. Finally, core genes were screened. The overall survival time of patients with the core genes was analyzed by Kaplan–Meier method. Gene ontology and Kyoto encyclopedia of genes and genomes bioaccumulation was calculated by DAVID. Results: Functional enrichment analysis indicated that nine key genes were actively involved in the biological process of smoking-related LUAD. Conclusion: 23 core genes and nine key genes among them were correlated with adverse prognosis of LUAD induced by smoking.


Genome ◽  
2017 ◽  
Vol 60 (12) ◽  
pp. 1021-1028 ◽  
Author(s):  
M.H. Ye ◽  
H. Bao ◽  
Y. Meng ◽  
L.L. Guan ◽  
P. Stothard ◽  
...  

While some research has looked into the host genetic response in pigs challenged with specific viruses or bacteria, few studies have explored the expression changes of transcripts in the peripheral blood of sick pigs that may be infected with multiple pathogens on farms. In this study, the architecture of the peripheral blood transcriptome of 64 Duroc sired commercial pigs, including 18 healthy animals at entry to a growing facility (set as a control) and 23 pairs of samples from healthy and sick pen mates, was generated using RNA-Seq technology. In total, 246 differentially expressed genes were identified to be specific to the sick animals. Functional enrichment analysis for those genes revealed that the over-represented gene ontology terms for the biological processes category were exclusively immune activity related. The cytokine–cytokine receptor interaction pathway was significantly enriched. Nine functional genes from this pathway encoding members (as well as their receptors) of the interleukins, chemokines, tumor necrosis factors, colony stimulating factors, activins, and interferons exhibited significant transcriptional alteration in sick animals. Our results suggest a subset of novel marker genes that may be useful candidate genes in the evaluation and prediction of health status in pigs under commercial production conditions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Weihang Li ◽  
Ziyi Ding ◽  
Dong Wang ◽  
Chengfei Li ◽  
Yikai Pan ◽  
...  

Abstract Objectives This study aimed to identify novel targets in the carcinogenesis, therapy and prognosis of osteosarcoma from genomic level, together with screening ideal lead compounds with potential inhibition regarding MMP-9. Methods Gene expression profiles from GSE12865, GSE14359, GSE33382, GSE36001 and GSE99671 were obtained respectively from GEO database. Differentially expressed genes were identified, and functional enrichment analysis, such as GO, KEGG, GSEA, PPI were performed to make a comprehensive understanding of the hub genes. Next, a series of high-precision computational techniques were conducted to screen potential lead compounds targeting MMP9, including virtual screening, ADME, toxicity prediction, and accurate docking analysis. Results 10 genes, MMP9, CD74, SPP1, CXCL12, TYROBP, FCER1G, HCLS1, ARHGDIB, LAPTM5 and IGF1R were identified as hub genes in the initiation of osteosarcoma. Machine learning, multivariate Cox analysis, ssGSEA and survival analysis demonstrated that these genes had values in prognosis, immune-correlation and targeted treatment. Tow novel compounds, ZINC000072131515 and ZINC000004228235, were screened as potential inhibitor regarding MMP9, and they could bind to MMP9 with favorable interaction energy and high binding affinity. Meanwhile, they were precited to be efficient and safe drugs with low-ames mutagenicity, none weight evidence of carcinogenicity, as well as non-toxic with liver. Conclusions This study revealed the significance of 10-gene signature in the development of osteosarcoma. Besides, drug candidates identified in this study provided a solid basis on MMP9 inhibitors’ development.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Siying He ◽  
Hui Sun ◽  
Yifang Huang ◽  
Shiqi Dong ◽  
Chen Qiao ◽  
...  

Purpose. MiRNAs have been widely analyzed in the occurrence and development of many diseases, including pterygium. This study aimed to identify the key genes and miRNAs in pterygium and to explore the underlying molecular mechanisms. Methods. MiRNA expression was initially extracted and pooled by published literature. Microarray data about differentially expressed genes was downloaded from Gene Expression Omnibus (GEO) database and analyzed with the R programming language. Functional and pathway enrichment analyses were performed using the database for Annotation, Visualization and Integrated Discovery (DAVID). The protein-protein interaction network was constructed with the STRING database. The associations between chemicals, differentially expressed miRNAs, and differentially expressed genes were predicted using the online resource. All the networks were constructed using Cytoscape. Results. We found that 35 miRNAs and 301 genes were significantly differentially expressed. Functional enrichment analysis showed that upregulated genes were significantly enriched in extracellular matrix (ECM) organization, while downregulated genes were mainly involved in cell death and apoptotic process. Finally, we concluded the chemical-gene affected network, miRNA-mRNA interacted networks, and significant pathway network. Conclusion. We identified lists of differentially expressed miRNAs and genes and their possible interaction in pterygium. The networks indicated that ECM breakdown and EMT might be two major pathophysiological mechanisms and showed the potential significance of PI3K-Akt signalling pathway. MiR-29b-3p and collagen family (COL4A1 and COL3A1) might be new treatment target in pterygium.


2020 ◽  
Author(s):  
Yunwen Cui ◽  
Cheng Liu ◽  
Jian Luo ◽  
Jie Liang

Abstract Background Hypertrophic cardiomyopathy (HCM) is a group of heterogeneous diseases that affect the myocardium. It is also a common familial disease. The symptoms are not common and easy to find. Methods In this study, gene expression profiles of 37 samples (GSE130036) were downloaded from GEO database. Differential analysis was used to identify the related dysregulated genes in patients with HCM. Enrichment analysis identified the biological function and signal pathway of these differentially expressed genes. Then, we build PPI network and verify it in GSE36961 dataset. Finally, the gene of single nuclear variants (SNVs) in HCM samples was screened by means of maftools. Results Herein, we obtained 920 differentially expressed genes, and found that these genes are mainly related to metabolic related signaling pathways. 187 interacting genes were identified by PPI network analysis, and the expression trends of C1QB, F13A1, CD163, FCN3, PLA2G2A and CHRDL2 were verified by another dataset. ROC curve analysis showed that they had certain clinical diagnostic ability, and they were the potential key dysfunctional genes of HCM. In addition, we found that PRMT5 mutation was the most frequent in HCM samples, which may affect the pathogenesis of HCM. Conclusions Therefore, the key genes and enrichment results identified by our analysis may provide a reference for the occurrence and development mechanism of HCM. In addition, mutations in PRMT5 may be a useful therapeutic and diagnostic target for HCM.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Peng Qin ◽  
Mengyu Zhang ◽  
Xue Liu ◽  
Ziming Dong

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death. HBV infection is an important risk factor for the tumorigenesis of HCC, given that the inflammatory environment is closely related to morbidity and prognosis. Consequently, it is of urgent importance to explore the immunogenomic landscape to supplement the prognosis of HCC. The expression profiles of immune‐related genes (IRGs) were integrated with 377 HCC patients to generate differentially expressed IRGs based on the Cancer Genome Atlas (TCGA) dataset. These IRGs were evaluated and assessed in terms of their diagnostic and prognostic values. A total of 32 differentially expressed immune‐related genes resulted as significantly correlated with the overall survival of HCC patients. The Gene Ontology functional enrichment analysis revealed that these genes were actively involved in cytokine‐cytokine receptor interaction. A prognostic signature based on IRGs (HSPA4, PSME3, PSMD14, FABP6, ISG20L2, TRAF3, NDRG1, NRAS, CSPG5, and IL17D) stratified patients into high-risk versus low-risk groups in terms of overall survival and remained as an independent prognostic factor in multivariate analyses after adjusting for clinical and pathologic factors. Several IRGs (HSPA4, PSME3, PSMD14, FABP6, ISG20L2, TRAF3, NDRG1, NRAS, CSPG5, and IL17D) of clinical significance were screened in the present study, revealing that the proposed clinical-immune signature is a promising risk score for predicting the prognosis of HCC.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1103 ◽  
Author(s):  
Arthur C. Oliveira ◽  
Luiz A. Bovolenta ◽  
Lucas Alves ◽  
Lucas Figueiredo ◽  
Amanda O. Ribeiro ◽  
...  

MicroRNAs (miRNAs) are non-coding RNAs that regulate a wide range of biological pathways by post-transcriptionally modulating gene expression levels. Given that even a single miRNA may simultaneously control several genes enrolled in multiple biological functions, one would expect that these tiny RNAs have the ability to properly sort among distinctive cellular processes to drive protein production. To test this hypothesis, we scrutinized previously published microarray datasets and clustered protein-coding gene expression profiles according to the intensity of fold-change levels caused by the exogenous transfection of 10 miRNAs (miR-1, miR-7, miR-9, miR-124, miR-128a, miR-132, miR-133a, miR-142, miR-148b, miR-181a) in a human cell line. Through an in silico functional enrichment analysis, we discovered non-randomic regulatory patterns, proper of each cluster identified. We demonstrated that miRNAs are capable of equivalently modulate the expression signatures of target genes in regulatory clusters according to the biological function they are assigned to. Moreover, target prediction analysis applied to ten vertebrate species, suggest that such miRNA regulatory modus operandi is evolutionarily conserved within vertebrates. Overall, we discovered a complex regulatory cluster-module strategy driven by miRNAs, which relies on the controlled intensity of the repression over distinct targets under specific biological contexts. Our discovery helps to clarify the mechanisms underlying the functional activity of miRNAs and makes it easier to take the fastest and most accurate path in the search for the functions of miRNAs in any distinct biological process of interest.


Sign in / Sign up

Export Citation Format

Share Document