scholarly journals Identification and Interaction Analysis of Significant Genes and MicroRNAs in Pterygium

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Siying He ◽  
Hui Sun ◽  
Yifang Huang ◽  
Shiqi Dong ◽  
Chen Qiao ◽  
...  

Purpose. MiRNAs have been widely analyzed in the occurrence and development of many diseases, including pterygium. This study aimed to identify the key genes and miRNAs in pterygium and to explore the underlying molecular mechanisms. Methods. MiRNA expression was initially extracted and pooled by published literature. Microarray data about differentially expressed genes was downloaded from Gene Expression Omnibus (GEO) database and analyzed with the R programming language. Functional and pathway enrichment analyses were performed using the database for Annotation, Visualization and Integrated Discovery (DAVID). The protein-protein interaction network was constructed with the STRING database. The associations between chemicals, differentially expressed miRNAs, and differentially expressed genes were predicted using the online resource. All the networks were constructed using Cytoscape. Results. We found that 35 miRNAs and 301 genes were significantly differentially expressed. Functional enrichment analysis showed that upregulated genes were significantly enriched in extracellular matrix (ECM) organization, while downregulated genes were mainly involved in cell death and apoptotic process. Finally, we concluded the chemical-gene affected network, miRNA-mRNA interacted networks, and significant pathway network. Conclusion. We identified lists of differentially expressed miRNAs and genes and their possible interaction in pterygium. The networks indicated that ECM breakdown and EMT might be two major pathophysiological mechanisms and showed the potential significance of PI3K-Akt signalling pathway. MiR-29b-3p and collagen family (COL4A1 and COL3A1) might be new treatment target in pterygium.

2021 ◽  
Author(s):  
Mingyi Yang ◽  
Yani Su ◽  
Yao Ma ◽  
Yirixiati Aihaiti ◽  
Peng Xu

Abstract Objective: To study the potential biomarkers and related pathways in osteoarthritis (OA) synovial lesions, and to provide theoretical basis and research directions for the pathogenesis and treatment of OA. Methods: Download the microarray data sets GSE12021 and GSE82107 from Gene Expression Omnibus. GEO2R recognizes differentially expressed genes. Perform functional enrichment analysis of differentially expressed genes and construct protein-protein interaction network. Cytoscape performs module analysis and enrichment analysis of top-level modules. Further identify the Hub gene and perform functional enrichment analysis. TargetScan, miRDB and miRWalk three databases predict the target miRNAs of Hub gene and identify key miRNAs. Results: Finally, 10 Hub genes and 17 key miRNAs related to the progression of OA synovitis were identified. NF1, BTRC and MAPK14 may play a vital role in OA synovial disease. Conclusion: The Hub genes and key miRNAs discovered in this study may be potential biomarkers in the development of OA synovitis, and provide research methods and target basis for the pathogenesis and treatment of OA.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 417
Author(s):  
Chuanxi Peng ◽  
Xing Wang ◽  
Tianyu Feng ◽  
Rui He ◽  
Mingcai Zhang ◽  
...  

MicroRNAs (miRNAs), the post-transcriptional gene regulators, are known to play an important role in plant development. The identification of differentially expressed miRNAs could better help us understand the post-transcriptional regulation that occurs during maize internode elongation. Accordingly, we compared the expression of MIRNAs between fixed internode and elongation internode samples and classified six differentially expressed MIRNAs as internode elongation-responsive miRNAs including zma-MIR160c, zma-MIR164b, zma-MIR164c, zma-MIR168a, zma-MIR396f, and zma-MIR398b, which target mRNAs supported by transcriptome sequencing. Functional enrichment analysis for predictive target genes showed that these miRNAs were involved in the development of internode elongation by regulating the genes respond to hormone signaling. To further reveal how miRNA affects internode elongation by affecting target genes, the miRNA–mRNA–PPI (protein and protein interaction) network was constructed to summarize the interaction of miRNAs and these target genes. Our results indicate that miRNAs regulate internode elongation in maize by targeting genes related to cell expansion, cell wall synthesis, transcription, and regulatory factors.


2020 ◽  
Vol 9 (2) ◽  
pp. LMT30
Author(s):  
Chuanli Ren ◽  
Weixiu Sun ◽  
Xu Lian ◽  
Chongxu Han

Aim: To screen and identify key genes related to the development of smoking-induced lung adenocarcinoma (LUAD). Materials & methods: We obtained data from the GEO chip dataset GSE31210. The differentially expressed genes were screened by GEO2R. The protein interaction network of differentially expressed genes was constructed by STRING and Cytoscape. Finally, core genes were screened. The overall survival time of patients with the core genes was analyzed by Kaplan–Meier method. Gene ontology and Kyoto encyclopedia of genes and genomes bioaccumulation was calculated by DAVID. Results: Functional enrichment analysis indicated that nine key genes were actively involved in the biological process of smoking-related LUAD. Conclusion: 23 core genes and nine key genes among them were correlated with adverse prognosis of LUAD induced by smoking.


2019 ◽  
Vol 14 (7) ◽  
pp. 591-601 ◽  
Author(s):  
Aravind K. Konda ◽  
Parasappa R. Sabale ◽  
Khela R. Soren ◽  
Shanmugavadivel P. Subramaniam ◽  
Pallavi Singh ◽  
...  

Background: Chickpea is a nutritional rich premier pulse crop but its production encounters setbacks due to various stresses and understanding of molecular mechanisms can be ascribed foremost importance. Objective: The investigation was carried out to identify the differentially expressed WRKY TFs in chickpea in response to herbicide stress and decipher their interacting partners. Methods: For this purpose, transcriptome wide identification of WRKY TFs in chickpea was done. Behavior of the differentially expressed TFs was compared between other stress conditions. Orthology based cofunctional gene networks were derived from Arabidopsis. Gene ontology and functional enrichment analysis was performed using Blast2GO and STRING software. Gene Coexpression Network (GCN) was constructed in chickpea using publicly available transcriptome data. Expression pattern of the identified gene network was studied in chickpea-Fusarium interactions. Results: A unique WRKY TF (Ca_08086) was found to be significantly (q value = 0.02) upregulated not only under herbicide stress but also in other stresses. Co-functional network of 14 genes, namely Ca_08086, Ca_19657, Ca_01317, Ca_20172, Ca_12226, Ca_15326, Ca_04218, Ca_07256, Ca_14620, Ca_12474, Ca_11595, Ca_15291, Ca_11762 and Ca_03543 were identified. GCN revealed 95 hub genes based on the significant probability scores. Functional annotation indicated role in callose deposition and response to chitin. Interestingly, contrasting expression pattern of the 14 network genes was observed in wilt resistant and susceptible chickpea genotypes, infected with Fusarium. Conclusion: This is the first report of identification of a multi-stress responsive WRKY TF and its associated GCN in chickpea.


2021 ◽  
Author(s):  
Nana Yang ◽  
Qianghua Wang ◽  
Biao Ding ◽  
Yinging Gong ◽  
Yue Wu ◽  
...  

Abstract Background: The accumulation of ROS resulting from upregulated levels of oxidative stress is commonly implicated in preeclampsia (PE). Ferroptosis is a novel form of iron-dependent cell death instigated by lipid peroxidation likely plays important role in PE pathogenesis. This study aims to investigate expression profiles and functions of the ferroptosis-related genes (FRGs) in early- and late-onset preeclampsia.Methods: The gene expression data and clinical information were downloaded from GEO database. The “limma” R package was used for screening differentially expressed genes. GO(Gene Ontology), Kyoto Encyclopedia of Genes and Genomes(KEGG) and protein protein interaction (PPI) network analyses were conducted to investigate the bioinformatics functions and molecular interactions of significantly different FRGs. Quantitative real-time reverse transcriptase PCR was used to verify the expression of hub FRGs in PE.Results: A total number of 4,215 DEGs were identified between EOPE and preterm cases and 3,356 DEGs were found between EOPE and LOPE subtypes. 20 significantly different FRGs were identified in EOPE, while only 3 in LOPE. Functional enrichment analysis revealed that the differentially expressed FRGs was mainly involved in EOPE and enriched in hypoxia- and iron-related pathways, such as response to hypoxia, iron homeostasis and iron ion binding process. The PPI network analysis and verification by RT-qPCR resulted in the identification of the following six interesting FRGs: FTH1, HIF1A, FTL, IREB2, MAPK8 and PLIN2. Conclusions: EOPE and LOPE owned distinct underlying molecular mechanisms and ferroptosis may be mainly implicated in pathogenesis of EOPE. Further studies are necessary for deeper inquiry into placental ferroptosis and its role in the pathogenesis of EOPE.


Genome ◽  
2017 ◽  
Vol 60 (12) ◽  
pp. 1021-1028 ◽  
Author(s):  
M.H. Ye ◽  
H. Bao ◽  
Y. Meng ◽  
L.L. Guan ◽  
P. Stothard ◽  
...  

While some research has looked into the host genetic response in pigs challenged with specific viruses or bacteria, few studies have explored the expression changes of transcripts in the peripheral blood of sick pigs that may be infected with multiple pathogens on farms. In this study, the architecture of the peripheral blood transcriptome of 64 Duroc sired commercial pigs, including 18 healthy animals at entry to a growing facility (set as a control) and 23 pairs of samples from healthy and sick pen mates, was generated using RNA-Seq technology. In total, 246 differentially expressed genes were identified to be specific to the sick animals. Functional enrichment analysis for those genes revealed that the over-represented gene ontology terms for the biological processes category were exclusively immune activity related. The cytokine–cytokine receptor interaction pathway was significantly enriched. Nine functional genes from this pathway encoding members (as well as their receptors) of the interleukins, chemokines, tumor necrosis factors, colony stimulating factors, activins, and interferons exhibited significant transcriptional alteration in sick animals. Our results suggest a subset of novel marker genes that may be useful candidate genes in the evaluation and prediction of health status in pigs under commercial production conditions.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Wenqing Nai ◽  
Diane Threapleton ◽  
Jingbo Lu ◽  
Kewei Zhang ◽  
Hongyuan Wu ◽  
...  

Abstract Atherosclerosis is the primary cause of cardiovascular events and its molecular mechanism urgently needs to be clarified. In our study, atheromatous plaques (ATH) and macroscopically intact tissue (MIT) sampled from 32 patients were compared and an integrated series of bioinformatic microarray analyses were used to identify altered genes and pathways. Our work showed 816 genes were differentially expressed between ATH and MIT, including 443 that were up-regulated and 373 that were down-regulated in ATH tissues. GO functional-enrichment analysis for differentially expressed genes (DEGs) indicated that genes related to the “immune response” and “muscle contraction” were altered in ATHs. KEGG pathway-enrichment analysis showed that up-regulated DEGs were significantly enriched in the “FcεRI-mediated signaling pathway”, while down-regulated genes were significantly enriched in the “transforming growth factor-β signaling pathway”. Protein-protein interaction network and module analysis demonstrated that VAV1, SYK, LYN and PTPN6 may play critical roles in the network. Additionally, similar observations were seen in a validation study where SYK, LYN and PTPN6 were markedly elevated in ATH. All in all, identification of these genes and pathways not only provides new insights into the pathogenesis of atherosclerosis, but may also aid in the development of prognostic and therapeutic biomarkers for advanced atheroma.


2022 ◽  
pp. 1-12
Author(s):  
Zhengfei Ma ◽  
Ping Zhong ◽  
Peidong Yue ◽  
Zhongwu Sun

<b><i>Background:</i></b> Intracranial aneurysm (IA) is a serious cerebrovascular disease. The identification of key regulatory genes can provide research directions for early diagnosis and treatment of IA. <b><i>Methods:</i></b> Initially, the miRNA and mRNA data were downloaded from the Gene Expression Omnibus database. Subsequently, the limma package in R was used to screen for differentially expressed genes. In order to investigate the function of the differentially expressed genes, a functional enrichment analysis was performed. Moreover, weighted gene co-expression network analysis (WGCNA) was performed to identify the hub module and hub miRNAs. The correlations between miRNAs and mRNAs were assessed by constructing miRNA-mRNA regulatory networks. In addition, in vitro validation was performed. Finally, diagnostic analysis and electronic expression verification were performed on the GSE122897 dataset. <b><i>Results:</i></b> In the present study, 955 differentially expressed mRNAs (DEmRNAs, 480 with increased and 475 with decreased expression) and 46 differentially expressed miRNAs (DEmiRNAs, 36 with increased and 10 with decreased expression) were identified. WGCNA demonstrated that the yellow module was the hub module. Moreover, 16 hub miRNAs were identified. A total of 1,124 negatively regulated miRNA-mRNA relationship pairs were identified. Functional analysis demonstrated that DEmRNAs in the targeted network were enriched in vascular smooth muscle contraction and focal adhesion pathways. In addition, the area under the curve of 16 hub miRNAs was &#x3e;0.8. It is implied that 16 hub miRNAs may be used as potential diagnostic biomarkers of IA. <b><i>Conclusion:</i></b> Hub miRNAs and key signaling pathways were identified by bioinformatics analysis. This evidence lays the foundation for understanding the underlying molecular mechanisms of IA and provided potential therapeutic targets for the treatment of this disease.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Zhao Hui ◽  
Wang Zhanwei ◽  
Yang Xi ◽  
Liu Jin ◽  
Zhuang Jing ◽  
...  

Objective. To screen some RNAs that correlated with colorectal cancer (CRC). Methods. Differentially expressed miRNAs, lncRNAs, and mRNAs between cancer tissues and normal tissues in CRC were identified using data from the Gene Expression Omnibus (GEO) database. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and protein-protein interactions (PPIs) were performed to do the functional enrichment analysis. And a lncRNA-miRNA-mRNA network was constructed which correlated with CRC. RNAs in this network were subjected to analyze the relationship with the patient prognosis. Results. A total of 688, 241, and 103 differentially expressed genes (diff-mRNA), diff-lncRNA, and diff-miRNA were obtained between cancer tissues and normal tissues. A total of 315 edges were obtained in the ceRNA network. lncRNA RP11-108K3.2 and mRNA ONECUT2 correlated with prognosis. Conclusion. The identified RNAs and constructed ceRNA network could provide great sources for the researches of therapy of the CRC. And the lncRNA RP11-108K3.2 and mRNA ONECUT2 may serve as a novel prognostic predictor of CRC.


2021 ◽  
Vol 36 ◽  
pp. 153331752110217
Author(s):  
Liu Lu ◽  
Wen-Zhuo Dai ◽  
Xi-Chen Zhu ◽  
Tao Ma

This paper was aimed to analyze the microRNA (miRNA) signatures in Alzheimer disease (AD) and find the significant expressions of miRNAs, their target genes, the functional enrichment analysis of the confirmed genes, and potential drug treatment. The miRNA expression information of the gene expression profile data was downloaded from the Gene Expression Omnibus database. The total data sample size is 1309, including 1021 AD samples and 288 normal samples. A total of 21 differentially expressed miRNAs were obtained, of which 16 (hsa-miR-6761-3p, hsa-miR-6747-3p, hsa-miR-6875-3p, hsa-miR-6754-3p, hsa-miR-6736-3p, hsa-miR-6762-3p, hsa-miR-6787-3p, hsa-miR-208a-5p, hsa-miR-6740-3p, hsa-miR-6778-3p, hsa-miR-595, hsa-miR-6753-3p, hsa-miR-4747-3p, hsa-miR-3646, hsa-miR-6716-3p and hsa-miR-4435) were up-regulated and 5 (hsa-miR-125a-3p, hsa-miR-22-3p, hsa-miR-24-3p, hsa-miR-6131 and hsa-miR-125b-1-3p) were down-regulated in AD. A total of 6 miRNAs (hsa-miR-595, hsa-miR-3646, hsa-miR-4435 hsa-miR-125a-3p, hsa-miR-22-3p and hsa-miR-24-3p) and 78 miRNA-disease-related gene sub-networks were predicted, and 116 ceRNA regulatory relationship pairs, and the ceRNA regulatory network were obtained. The results of enrichment analysis suggested that the main target pathways of several miRNAs differentially expressed in AD were mitogen-activated protein kinase signal pathway. According to the prediction results of Drug-Gene Interaction database 2.0, we obtained 53 pairs of drug-gene interaction, including 7 genes (PTGS2, EGFR, CALM1, PDE4D, FGFR2, HMGCR, cdk6) and 53 drugs. We hope our results are helpful to find a viable way to prevent, delay the onset, diagnose, and treat AD.


Sign in / Sign up

Export Citation Format

Share Document