scholarly journals Directed motor actions and choice signalling drive cortical acetylcholine dynamics.

2021 ◽  
Author(s):  
Jing Zou ◽  
Simon Trinh ◽  
Andrew Erskine ◽  
Miao Jing ◽  
Jennifer Yao ◽  
...  

Numerous cognitive functions including attention, learning, and plasticity are influenced by the dynamic patterns of acetylcholine release across the brain. How acetylcholine mediates these functions in cortex remains unclear, as the spatiotemporal relationship between cortical acetylcholine and behavioral events has not been precisely measured across task learning. To dissect this relationship, we quantified motor behavior and sub-second acetylcholine dynamics in primary somatosensory cortex during acquisition and performance of a tactile-guided object localization task. We found that acetylcholine dynamics were spatially homogenous and directly attributable to whisker motion and licking, rather than sensory cues or reward delivery. As task performance improved across training, acetylcholine release to the first lick in a trial became dramatically and specifically potentiated, paralleling the emergence of a choice-signalling basis for this motor action. These results show that acetylcholine dynamics in sensory cortex are driven by directed motor actions to gather information and act upon it.

2021 ◽  
Vol 15 ◽  
Author(s):  
Machiko Ohbayashi

The ability to learn and perform a sequence of movements is a key component of voluntary motor behavior. During the learning of sequential movements, individuals go through distinct stages of performance improvement. For instance, sequential movements are initially learned relatively fast and later learned more slowly. Over multiple sessions of repetitive practice, performance of the sequential movements can be further improved to the expert level and maintained as a motor skill. How the brain binds elementary movements together into a meaningful action has been a topic of much interest. Studies in human and non-human primates have shown that a brain-wide distributed network is active during the learning and performance of skilled sequential movements. The current challenge is to identify a unique contribution of each area to the complex process of learning and maintenance of skilled sequential movements. Here, I bring together the recent progress in the field to discuss the distinct roles of cortical motor areas in this process.


2014 ◽  
Vol 9 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Giuliano Fontani ◽  
Silvia Migliorini ◽  
Leda Lodi ◽  
Enrico De Martino ◽  
Nektarios Solidakis ◽  
...  

AbstractThe purpose of this study was to analyze the movement-related brain macropotentials (MRBMs) recorded during the execution of two tests of motor imagery: kinaesthetic (internal) and visual (external). Recordings were compared with those obtained performing a GO/NOGO motor test. The GO test required pressure of three keys of a modified keyboard in sequence when a figure appeared in the computer screen. On NOGO trials no button had to be pressed. Motor imagery tests were an internal or kinaesthetic imagination test (IN MI) on which participants imagined performing the pressure of keyboard buttons, avoiding any real movement, and an external or visual imagination test (EX MI) on which subjects were asked to imagine seeing their finger press the buttons. With the completion of the Movement Imagery Questionnaire, the participants were assigned into two groups: high (11) and low (10) capacity of imagination. The results showed an increase in the amplitude of the MRBMs wave occurring in the prestimulus period of imagination, with respect to real motor action. In the poststimulus period, the amplitude and duration of the waves recorded during motor action were higher than those recorded during the motor imagery tests. The comparison between EX and IN MI showed a lower latency and a higher amplitude of the brain waves recorded during internal motor imagery with respect to those observed during EX MI. The experimental data confirm that real motor activity is related to higher amplitude MRBMs than motor imagery. The profile of the waves recorded during internal imagery seems to be related to a higher brain involvement compared to those recorded during external visual imagery; it suggest that the kinaesthetic process of imagination is more efficient in information processing and motor skill acquisition.


2018 ◽  
Vol 48 (1) ◽  
pp. 150-159
Author(s):  
Jonathan M. P. Wilbiks ◽  
Sean Hutchins

In previous research, there exists some debate about the effects of musical training on memory for verbal material. The current research examines this relationship, while also considering musical training effects on memory for musical excerpts. Twenty individuals with musical training were tested and their results were compared to 20 age-matched individuals with no musical experience. Musically trained individuals demonstrated a higher level of memory for classical musical excerpts, with no significant differences for popular musical excerpts or for words. These findings are in support of previous research showing that while music and words overlap in terms of their processing in the brain, there is not necessarily a facilitative effect between training in one domain and performance in the other.


2009 ◽  
Vol 102 (4) ◽  
pp. 2526-2537 ◽  
Author(s):  
Sylvie Lardeux ◽  
Remy Pernaud ◽  
Dany Paleressompoulle ◽  
Christelle Baunez

It was recently shown that subthalamic nucleus (STN) lesions affect motivation for food, cocaine, and alcohol, differentially, according to either the nature of the reward or the preference for it. The STN may thus code a reward according to its value. Here, we investigated how the firing of subthalamic neurons is modulated during expectation of a predicted reward between two possibilities (4 or 32% sucrose solution). The firing pattern of neurons responding to predictive cues and to reward delivery indicates that STN neurons can be divided into subpopulations responding specifically to one reward and less or giving no response to the other. In addition, some neurons (“oops” neurons) specifically encode errors as they respond only during error trials. These results reveal that the STN plays a critical role in ascertaining the value of the reward and seems to encode that value differently depending on the magnitude of the reward. These data highlight the importance of the STN in the reward circuitry of the brain.


2012 ◽  
Vol 23 (12) ◽  
pp. 1455-1460 ◽  
Author(s):  
Lisa Legault ◽  
Timour Al-Khindi ◽  
Michael Inzlicht

Self-affirmation produces large effects: Even a simple reminder of one’s core values reduces defensiveness against threatening information. But how, exactly, does self-affirmation work? We explored this question by examining the impact of self-affirmation on neurophysiological responses to threatening events. We hypothesized that because self-affirmation increases openness to threat and enhances approachability of unfavorable feedback, it should augment attention and emotional receptivity to performance errors. We further hypothesized that this augmentation could be assessed directly, at the level of the brain. We measured self-affirmed and nonaffirmed participants’ electrophysiological responses to making errors on a task. As we anticipated, self-affirmation elicited greater error responsiveness than did nonaffirmation, as indexed by the error-related negativity, a neural signal of error monitoring. Self-affirmed participants also performed better on the task than did nonaffirmed participants. We offer novel brain evidence that self-affirmation increases openness to threat and discuss the role of error detection in the link between self-affirmation and performance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helen Feigin ◽  
Shira Baror ◽  
Moshe Bar ◽  
Adam Zaidel

AbstractPerceptual decisions are biased by recent perceptual history—a phenomenon termed 'serial dependence.' Here, we investigated what aspects of perceptual decisions lead to serial dependence, and disambiguated the influences of low-level sensory information, prior choices and motor actions. Participants discriminated whether a brief visual stimulus lay to left/right of the screen center. Following a series of biased ‘prior’ location discriminations, subsequent ‘test’ location discriminations were biased toward the prior choices, even when these were reported via different motor actions (using different keys), and when the prior and test stimuli differed in color. By contrast, prior discriminations about an irrelevant stimulus feature (color) did not substantially influence subsequent location discriminations, even though these were reported via the same motor actions. Additionally, when color (not location) was discriminated, a bias in prior stimulus locations no longer influenced subsequent location discriminations. Although low-level stimuli and motor actions did not trigger serial-dependence on their own, similarity of these features across discriminations boosted the effect. These findings suggest that relevance across perceptual decisions is a key factor for serial dependence. Accordingly, serial dependence likely reflects a high-level mechanism by which the brain predicts and interprets new incoming sensory information in accordance with relevant prior choices.


2021 ◽  
Vol 15 (5) ◽  
pp. 356-371
Author(s):  
Cláudio M. F. Leite ◽  
Carlos E. Campos ◽  
Crislaine R. Couto ◽  
Herbert Ugrinowitsch

Interacting with the environment requires a remarkable ability to control, learn, and adapt motor skills to ever-changing conditions. The intriguing complexity involved in the process of controlling, learning, and adapting motor skills has led to the development of many theoretical approaches to explain and investigate motor behavior. This paper will present a theoretical approach built upon the top-down mode of motor control that shows substantial internal coherence and has a large and growing body of empirical evidence: The Internal Models. The Internal Models are representations of the external world within the CNS, which learn to predict this external world, simulate behaviors based on sensory inputs, and transform these predictions into motor actions. We present the Internal Models’ background based on two main structures, Inverse and Forward models, explain how they work, and present some applicability.


2008 ◽  
Vol 106 (2) ◽  
pp. 573-578 ◽  
Author(s):  
Tore Kristian Aune ◽  
Arve Vorland Pedersen ◽  
Rolf P. Ingvaldsen
Keyword(s):  

2020 ◽  
Vol 127 (10) ◽  
pp. 1369-1376
Author(s):  
Thomas Müller ◽  
Ali Harati

Abstract Motor symptoms in patients with Parkinson’s disease may be determined with instrumental tests and rating procedures. Their outcomes reflect the functioning and the impairment of the individual patient when patients are tested off and on dopamine substituting drugs. Objectives were to investigate whether the execution speed of a handwriting task, instrumentally assessed fine motor behavior, and rating scores improve after soluble levodopa application. 38 right-handed patients were taken off their regular drug therapy for at least 12 h before scoring, handwriting, and performance of instrumental devices before and 1 h after 100 mg levodopa intake. The outcomes of all performed procedures improved. The easy-to-perform handwriting task and the instrumental tests demand for fast and precise execution of movement sequences with considerable cognitive load in the domains' attention and concentration. These investigations may serve as additional tools for the testing of the dopaminergic response.


2019 ◽  
Vol 122 (1) ◽  
pp. 378-388 ◽  
Author(s):  
F. Javier Domínguez-Zamora ◽  
Daniel S. Marigold

Frequent gait modifications are often required to navigate our world. These can involve long or wide steps or changes in direction. People generally prefer to minimize the motor cost (or effort) of a movement, although with changes in gait this is not always possible. The decision of when and where to shift gaze is critical for controlling motor actions, since vision informs the brain about the available choices for movement—in this case, where to step. Here we asked how motor cost influences the allocation of gaze. To address this, we had participants walk and step to the center of sequential targets on the ground. We manipulated the motor cost associated with controlling foot placement by varying the location of one target in the lateral direction on a trial-to-trial basis within environments with different numbers of targets. Costlier steps caused a switch from a gaze strategy of planning future steps to one favoring visual feedback of the current foot placement when participants had to negotiate another target immediately after. Specifically, costlier steps delayed gaze shifts away from the manipulated target. We show that this relates to the cost of moving the leg and redirecting the body’s center of mass from target to target. Overall, our results suggest that temporal gaze decisions are affected by motor costs associated with step-to-step demands of the environment. Moreover, they provide insight into what affects the coordination between the eyes and feet for the control of stable and accurate foot placement while walking. NEW & NOTEWORTHY Changes in gait allow us to navigate our world. For instance, one may step long or wide to avoid a spilled drink. The brain can direct gaze to gather relevant information for making these types of motor decisions; however, the factors affecting gaze allocation in natural behaviors are poorly understood. We show how the motor cost associated with a step influences the decision of when to redirect gaze to ensure accurate foot placement while walking.


Sign in / Sign up

Export Citation Format

Share Document