scholarly journals Direct RNA sequencing of Respiratory Syncytial Virus infected human cells generates a detailed overview of RSV polycistronic mRNA and transcript abundance

2021 ◽  
Author(s):  
I'ah Donovan Banfield ◽  
Sophie Hall ◽  
Tianyi Gao ◽  
Eleanor Murphy ◽  
Jack Li ◽  
...  

To characterize species of viral mRNA transcripts generated during respiratory syncytial virus (RSV) infection, human fibroblast-like MRC5 lung cells were infected with subgroup A RSV for 6, 16 and 24 hours. Total RNA was harvested and polyadenylated mRNA was enriched and sequenced by direct RNA sequencing on an Oxford nanopore device. This yielded over 150,000 direct mRNA transcript reads which were mapped to the viral genome and analysed to determine relative mRNA levels of viral genes using our in-house ORF-centric pipeline. We were also able to examine frequencies with which polycistronic readthrough mRNAs were generated and to assess the length of the polyadenylated tails for each group of transcripts. We show that there is a general but non-linear decline in gene transcript abundance across the viral genome, as predicted by the model of RSV gene transcription. However, the decline in transcript abundance is not consistent. We show that the polyadenylate tails generated by the viral polymerase are similar in length to those generated by the host cells polyadenylation machinery and broadly declined in length for most transcripts as infection progressed. Finally, we observed that the steady state abundance of transcripts with very short polyadenylate tails is much less for N, SH and G transcripts compared to NS1, NS2, P, M, F and M2 which may reflect differences in mRNA stability and/or translation rates.

2009 ◽  
Vol 16 (6) ◽  
pp. 816-823 ◽  
Author(s):  
Carolina Scagnolari ◽  
Fabio Midulla ◽  
Alessandra Pierangeli ◽  
Corrado Moretti ◽  
Enea Bonci ◽  
...  

ABSTRACT Given the critical role of pattern recognition receptors (PRRs) in acid nucleic recognition in the initiation of innate immunity and the orchestration of adaptive immunity, the aim of this study was to determine whether any heterogeneity of PRR expression in the airway tracts of infants with respiratory syncytial virus (RSV) infection might explain the broad clinical spectrum of RSV-associated bronchiolitis in infants. For this purpose, the levels of melanoma differentiation-associated protein-5 (MDA-5), retinoic acid inducible gene-1 (RIG-1), and Toll-like receptor 3 (TLR-3), TLR-7, TLR-8, and TLR-9 mRNAs were evaluated, using TaqMan quantitative reverse transcription-PCR, in cells from nasopharyngeal washes collected from 157 infants suffering from acute bronchiolitis whether or not they were associated with respiratory viruses. High interindividual variability was observed in both virus-positive and -negative infants; however, the relative gene expression levels of MDA-5, RIG-1, TLR-7, and TLR-8 were significantly higher in the virus-infected group, whereas the expression levels of TLR-3 and TLR-9 were not significantly different. The differences in the gene expression of MDA-5, RIG-1, TLR-7, and TLR-8 were more evident in infants with RSV infection than in those with bocavirus or rhinovirus infection. In RSV-infected infants, PRR-mRNA levels also were analyzed in relation to interferon protein levels, viral load, clinical severity, days of hospitalization, age, and body weight. A significant positive correlation was observed only between RSV viral load and RIG-1 mRNA levels. These findings provide the first direct evidence that, in infants with respiratory virus-associated bronchiolitis, especially RSV, there are substantial changes in PRR gene expression; this likely is an important determinant of the clinical outcome of bronchiolitis.


2020 ◽  
Author(s):  
Christopher S. Anderson ◽  
Tatiana Chirkova ◽  
Christopher G. Slaunwhite ◽  
Xing Qiu ◽  
Edward E. Walsh ◽  
...  

AbstractRespiratory syncytial virus (RSV) contains a conserved CX3C motif on the ectodomain of the G-protein. The motif has been indicated as facilitating attachment of the virus to the host initiating infection via the human CX3CR1 receptor. The natural CX3CR1 ligand, CX3CL1, has been shown to induce signaling pathways resulting in transcriptional changes in the host cells. We hypothesize that binding of RSV to CX3CR1 via CX3C leads to transcriptional changes in host epithelial cells. Using transcriptomic analysis, the effect of CX3CR1 engagement by RSV was investigated. Normal human bronchial epithelial (NHBE) cells were infected with RSV virus containing either wildtype G-protein, or a mutant virus containing a CX4C mutation in the G-protein. RNA sequencing was performed on mock and 4-days-post-infected cultures. NHBE cultures were also treated with purified recombinant wild-type A2 G-protein. Here we report that RSV infection resulted in significant changes in the levels 766 transcripts. Many nuclear associated proteins were upregulated in the WT group, including Nucleolin. Alternatively, cilia-associated genes, including CC2D2A and CFAP221 (PCDP1), were downregulated. The addition of recombinant G-protein to the culture lead to the suppression of cilia-related genes while also inducing Nucleolin. Mutation of the CX3C motif (CX4C) reversed these effects on transcription decreasing nucleolin induction and lessening the suppression of cilia-related transcripts in culture. Furthermore, immunohistochemical staining demonstrated decreases in in ciliated cells and altered morphology. Therefore, it appears that engagement of CX3CR1 leads to induction of genes necessary for RSV entry as well as dysregulation of genes associated with cilia function.ImportanceRespiratory Syncytial Virus (RSV) has an enormous impact on infants and the elderly including increased fatality rates and potential for causing lifelong lung problems. Humans become infected with RSV through the inhalation of viral particles exhaled from an infected individual. These virus particles contain specific proteins that the virus uses to attach to human ciliated lung epithelial cells, initiating infection. Two viral proteins, G-protein and F-protein, have been shown to bind to human CX3CR1and Nucleolin, respectively. Here we show that the G-protein induces Nucleolin and suppresses gene transcripts specific to ciliated cells. Furthermore, we show that mutation of the CX3C-motif on the G-protein, CX4C, reverses these transcriptional changes.


2013 ◽  
Vol 94 (8) ◽  
pp. 1691-1700 ◽  
Author(s):  
Jane Tian ◽  
Kelly Huang ◽  
Subramaniam Krishnan ◽  
Catherine Svabek ◽  
Daniel C. Rowe ◽  
...  

Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infection. Infection is critically dependent on the RSV fusion (F) protein, which mediates fusion between the viral envelope and airway epithelial cells. The F protein is also expressed on infected cells and is responsible for fusion of infected cells with adjacent cells, resulting in the formation of multinucleate syncytia. The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor that is constitutively highly expressed by type I alveolar epithelial cells. Here, we report that RAGE protected HEK cells from RSV-induced cell death and reduced viral titres in vitro. RAGE appeared to interact directly with the F protein, but, rather than inhibiting RSV entry into host cells, virus replication and budding, membrane-expressed RAGE or soluble RAGE blocked F-protein-mediated syncytium formation and sloughing. These data indicate that RAGE may contribute to protecting the lower airways from RSV by inhibiting the formation of syncytia, viral spread, epithelial damage and airway obstruction.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1088
Author(s):  
Dorothea R. Morris ◽  
Yue Qu ◽  
Anurodh Agrawal ◽  
Roberto P. Garofalo ◽  
Antonella Casola

Metabolic reprogramming of host cells is key to the foundation of a successful viral infection. Hypoxia inducible factors (HIFs) mediate oxygen utilization by regulating cellular metabolism and redox homeostasis. Under normoxic conditions, HIF proteins are synthesized and subsequently degraded following ubiquitination to allow for normal metabolic activities. Recent studies suggest that respiratory syncytial virus (RSV) has the ability to induce HIF-1α stabilization and accumulation through non-hypoxic mechanisms. This makes the HIF pathway a potential avenue of approach for RSV therapeutic development. Using a model of primary human small alveolar epithelial cells, we demonstrate RSV infections to greatly alter cellular metabolism in favor of the glycolytic and pentose phosphate pathways. Additionally, we show RSV infections to stabilize HIF-1α and HIF-2α expression in these cells. Inhibition of HIF-1α, but not HIF-2α, was found to significantly reduce RSV replication as well as the glycolytic pathway, as measured by the expression of hexokinase II. Our study contributes to the understanding of RSV-mediated changes to cellular metabolism and supports further investigation into anti-HIF-1α therapeutics for RSV infections.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Shin-ichi Yokota ◽  
Tamaki Okabayashi ◽  
Satoshi Hirakawa ◽  
Hiroyuki Tsutsumi ◽  
Tetsuo Himi ◽  
...  

Human respiratory syncytial virus (RSV) sometimes causes acute and severe lower respiratory tract illness in infants and young children. RSV strongly upregulates proinflammatory cytokines and the platelet-activating factor (PAF) receptor, which is a receptor forStreptococcus pneumoniae, in the pulmonary epithelial cell line A549. Clarithromycin (CAM), which is an antimicrobial agent and is also known as an immunomodulator, significantly suppressed RSV-induced production of interleukin-6, interleukin-8, and regulated on activation, normal T-cell expressed and secreted (RANTES). CAM also suppressed RSV-induced PAF receptor expression and adhesion of fluorescein-labeledS. pneumoniaecells to A549 cells. The RSV-inducedS. pneumoniaeadhesion was thought to be mediated by the host cell’s PAF receptor. CAM, which exhibits antimicrobial and immunomodulatory activities, was found in this study to suppress the RSV-induced adhesion of respiratory disease-causing bacteria,S. pneumoniae, to host cells. Thus, CAM might suppress immunological disorders and prevent secondary bacterial infections during RSV infection.


2004 ◽  
Vol 78 (2) ◽  
pp. 692-699 ◽  
Author(s):  
Kim C. Tran ◽  
Peter L. Collins ◽  
Michael N. Teng

ABSTRACT Nonsegmented negative-sense RNA viruses (mononegaviruses) control viral gene expression largely through a transcription gradient such that promoter-proximal genes are transcribed more abundantly than downstream genes. For some paramyxoviruses, naturally occurring differences in the levels of efficiency of transcription termination by various gene end (GE) signals provide an additional level of regulation of gene expression. The first two genes (NS1 and NS2) of respiratory syncytial virus (RSV) are particularly inefficient in termination. We investigated whether altering the termination efficiency (TE) of these two genes in infectious recombinant virus would affect transcription of promoter-proximal and promoter-distal genes, production of viral proteins, and viral replication in cell culture and in the respiratory tract of mice. Recombinant RSVs were constructed with mutations that increased or decreased the TE of the NS1 GE signal, increased that of the NS2 GE signal, or increased that of both signals. Increasing the TE of either or both GE signals resulted in decreased production of the related polycistronic readthrough mRNAs, which normally arise due to the failure of the viral polymerase to recognize the GE signal. This was accompanied by a small increase in the levels of monocistronic NS1 and NS2 mRNAs. Conversely, decreasing the TE of the NS1 GE increased the production of readthrough mRNAs concomitant with a decrease of monocistronic NS1 and NS2 mRNA levels. These changes were reflected in the levels of NS1 and NS2 protein. All of the mutant viruses displayed growth kinetics and virus yields similar to wild-type recombinant RSV (rA2) in both HEp-2 and Vero cells. In addition, all mutants grew similarly to rA2 in the upper- and lower-respiratory tract of BALB/c mice, though some of the mutants displayed slightly decreased replication. These data suggest that the natural inefficiencies of transcription termination by the NS1 and NS2 GE signals do not play important roles in controlling the magnitude of RSV gene expression or the efficiency of virus replication. Furthermore, while changes in the TE of a GE signal clearly can affect the transcription of its gene as well as that of the one immediately downstream, these changes did not have a significant effect on the overall transcriptional gradient.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2141
Author(s):  
Ignacio Rodriguez-Izquierdo ◽  
Rafael Ceña-Diez ◽  
Maria Jesús Serramia ◽  
Rosa Rodriguez-Fernández ◽  
Isidoro Martínez ◽  
...  

The respiratory syncytial virus (RSV) causes respiratory infection and bronchiolitis, requiring hospitalization mainly in infants. The interaction between RSV, envelope glycoproteins G and F, and cell surface heparan sulfate proteoglycans (HSPG) is required for binding and entry into the host cells. A G2-S16 polyanionic carbosilane dendrimer was identified as a possible RSV inhibitor. We speculated that the G2-S16 dendrimer adheres to the host cell-surface HSPG, acts through binding to HS receptors, and prevents further RSV infection. The G2-S16 dendrimer was non-toxic when applied intranasally to Balb/c mice, and interestingly enough, this G2-S16 dendrimer inhibits 85% RSV. Therefore, our G2-S16 dendrimer could be a candidate for developing a new possible therapy against RSV infection.


2000 ◽  
Vol 81 (11) ◽  
pp. 2715-2722 ◽  
Author(s):  
Isidoro Martínez ◽  
José A. Melero

Binding of human respiratory syncytial virus (HRSV) to cultured cells was measured by flow cytometry. Using this assay and influenza virus as a control virus with a well-characterized receptor, a systematic search of cell surface molecules that might be implicated in HRSV binding was carried out. Treatment of cells with different enzymes or with other reagents suggested that heparin-like glycosaminoglycans (GAGs) were involved in attachment of HRSV, but not influenza virus, to host cells. This was further confirmed by a lack of binding of HRSV to CHO-K1 mutant cell lines deficient in glycosylation or GAGs biosynthesis and by an inhibition of binding after preincubation of virus with heparin and other GAGs. The degree of sulfation, more than the polysaccharide backbone of GAGs, seems to be critical for virus binding.


Sign in / Sign up

Export Citation Format

Share Document