scholarly journals First high-quality genome assembly data of sago palm (Metroxylon sagu Rottboll)

2021 ◽  
Author(s):  
LEONARD WHYE KIT LIM ◽  
Melinda Mei Lin Lau ◽  
Hung-Hui Chung ◽  
Hasnain Hussain ◽  
HAN MING GAN

The sago palm (Metroxylon sagu Rottboll) is a all-rounder palm, it is both a tropical halophytic starch-producing palm as well as an ornamental plant. Recently, a genome survey was conducted on this palm using Illumina sequencing platform but the BUSCO genome completeness is very low (21.5%) and most of them (~78%) are either fragmented or missing. Thus, in this study, the sago palm genome completeness was further improved with the utilization of the Nanopore sequencing platform that produced longer reads. A hybrid genome assembly was conducted and the outcome was a much complete sago palm genome with BUSCO completeness achieved at as high as 97.9% with only ~2% of them either fragmented or missing. The estimated genome size of the sago palm is 509,812,790 bp in this study. A sum of 33,242 protein-coding genes were revealed from the sago palm genome and around 96.39% of them had been functionally annotated. An investigation on the carbohydrate metabolism KEGG pathways also unearthed that starch synthesis was one of the major sago palm activities. These data are indispensable for future molecular evolutionary and genome-wide association studies.

2011 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
Emily R. Atkins ◽  
Peter K. Panegyres

Alzheimer’s disease (AD) is the largest cause of dementia, affecting 35.6 million people in 2010. Amyloid precursor protein, presenilin 1 and presenilin 2 mutations are known to cause familial early-onset AD, whereas apolipoprotein E (APOE) ε4 is a susceptibility gene for late-onset AD. The genes for phosphatidylinositol- binding clathrin assembly protein, clusterin and complement receptor 1 have recently been described by genome-wide association studies as potential risk factors for lateonset AD. Also, a genome association study using single neucleotide polymorphisms has identified an association of neuronal sortilin related receptor and late-onset AD. Gene testing, and also predictive gene testing, may be of benefit in suspected familial early-onset AD however it adds little to the diagnosis of lateonset AD and does not alter the treatment. We do not recommend APOE ε4 genotyping.


2019 ◽  
Vol 22 (8) ◽  
pp. 1063-1069 ◽  
Author(s):  
N. S. Yudin ◽  
N. L. Podkolodnyy ◽  
T. A. Agarkova ◽  
E. V. Ignatieva

Selection by means of genetic markers is a promising approach to the eradication of infectious diseases in farm animals, especially in the absence of effective methods of treatment and prevention. Bovine leukemia virus (BLV) is spread throughout the world and represents one of the biggest problems for the livestock production and food security in Russia. However, recent genome-wide association studies have shown that sensitivity/resistance to BLV is polygenic. The aim of this study was to create a catalog of cattle genes and genes of other mammalian species involved in the pathogenesis of BLV-induced infection and to perform gene prioritization using bioinformatics methods. Based on manually collected information from a range of open sources, a total of 446 genes were included in the catalog of cattle genes and genes of other mammals involved in the pathogenesis of BLV-induced infection. The following criteria were used to prioritize 446 genes from the catalog: (1) the gene is associated with leukemia according to a genome-wide association study; (2) the gene is associated with leukemia according to a case-control study; (3) the role of the gene in leukemia development has been studied using knockout mice; (4) protein-protein interactions exist between the gene-encoded protein and either viral particles or individual viral proteins; (5) the gene is annotated with Gene Ontology terms that are overrepresented for a given list of genes; (6) the gene participates in biological pathways from the KEGG or REACTOME databases, which are over-represented for a given list of genes; (7) the protein encoded by the gene has a high number of protein-protein interactions with proteins encoded by other genes from the catalog. Based on each criterion, a rank was assigned to each gene. Then the ranks were summarized and an overall rank was determined. Prioritization of 446 candidate genes allowed us to identify 5 genes of interest (TNF,LTB,BOLA-DQA1,BOLA-DRB3,ATF2), which can affect the sensitivity/resistance of cattle to leukemia.


2018 ◽  
Vol 28 (1) ◽  
pp. 166-174 ◽  
Author(s):  
Sara L Pulit ◽  
Charli Stoneman ◽  
Andrew P Morris ◽  
Andrew R Wood ◽  
Craig A Glastonbury ◽  
...  

Abstract More than one in three adults worldwide is either overweight or obese. Epidemiological studies indicate that the location and distribution of excess fat, rather than general adiposity, are more informative for predicting risk of obesity sequelae, including cardiometabolic disease and cancer. We performed a genome-wide association study meta-analysis of body fat distribution, measured by waist-to-hip ratio (WHR) adjusted for body mass index (WHRadjBMI), and identified 463 signals in 346 loci. Heritability and variant effects were generally stronger in women than men, and we found approximately one-third of all signals to be sexually dimorphic. The 5% of individuals carrying the most WHRadjBMI-increasing alleles were 1.62 times more likely than the bottom 5% to have a WHR above the thresholds used for metabolic syndrome. These data, made publicly available, will inform the biology of body fat distribution and its relationship with disease.


Genes ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 374 ◽  
Author(s):  
Anna Dziewulska ◽  
Aneta Dobosz ◽  
Agnieszka Dobrzyn

Type 2 diabetes (T2D) is a complex disorder that is caused by a combination of genetic, epigenetic, and environmental factors. High-throughput approaches have opened a new avenue toward a better understanding of the molecular bases of T2D. A genome-wide association studies (GWASs) identified a group of the most common susceptibility genes for T2D (i.e., TCF7L2, PPARG, KCNJ1, HNF1A, PTPN1, and CDKAL1) and illuminated novel disease-causing pathways. Next-generation sequencing (NGS)-based techniques have shed light on rare-coding genetic variants that account for an appreciable fraction of T2D heritability (KCNQ1 and ADRA2A) and population risk of T2D (SLC16A11, TPCN2, PAM, and CCND2). Moreover, single-cell sequencing of human pancreatic islets identified gene signatures that are exclusive to α-cells (GCG, IRX2, and IGFBP2) and β-cells (INS, ADCYAP1, INS-IGF2, and MAFA). Ongoing epigenome-wide association studies (EWASs) have progressively defined links between epigenetic markers and the transcriptional activity of T2D target genes. Differentially methylated regions were found in TCF7L2, THADA, KCNQ1, TXNIP, SOCS3, SREBF1, and KLF14 loci that are related to T2D. Additionally, chromatin state maps in pancreatic islets were provided and several non-coding RNAs (ncRNA) that are key to T2D pathogenesis were identified (i.e., miR-375). The present review summarizes major progress that has been made in mapping the (epi)genomic landscape of T2D within the last few years.


2021 ◽  
pp. ASN.2020111599
Author(s):  
Zhi Yu ◽  
Jin Jin ◽  
Adrienne Tin ◽  
Anna Köttgen ◽  
Bing Yu ◽  
...  

Background: Genome-wide association studies (GWAS) have revealed numerous loci for kidney function (estimated glomerular filtration rate, eGFR). The relationship of polygenic predictors of eGFR, risk of incident adverse kidney outcomes, and the plasma proteome is not known. Methods: We developed a genome-wide polygenic risk score (PRS) for eGFR by applying the LDpred algorithm to summary statistics generated from a multiethnic meta-analysis of CKDGen Consortium GWAS (N=765,348) and UK Biobank GWAS (90% of the cohort; N=451,508), followed by best parameter selection using the remaining 10% of UK Biobank (N=45,158). We then tested the association of the PRS in the Atherosclerosis Risk in Communities (ARIC) study (N=8,866) with incident chronic kidney disease, kidney failure, and acute kidney injury. We also examined associations between the PRS and 4,877 plasma proteins measured at at middle age and older adulthood and evaluated mediation of PRS associations by eGFR. Results: The developed PRS showed significant associations with all outcomes with hazard ratios (95% CI) per 1 SD lower PRS ranged from 1.06 (1.01, 1.11) to 1.33 (1.28, 1.37). The PRS was significantly associated with 132 proteins at both time points. The strongest associations were with cystatin-C, collagen alpha-1(XV) chain, and desmocollin-2. Most proteins were higher at lower kidney function, except for 5 proteins including testican-2. Most correlations of the genetic PRS with proteins were mediated by eGFR. Conclusions: A PRS for eGFR is now sufficiently strong to capture risk for a spectrum of incident kidney diseases and broadly influences the plasma proteome, primarily mediated by eGFR.


Genetics ◽  
2019 ◽  
Vol 213 (4) ◽  
pp. 1225-1236 ◽  
Author(s):  
Weimiao Wu ◽  
Zhong Wang ◽  
Ke Xu ◽  
Xinyu Zhang ◽  
Amei Amei ◽  
...  

Longitudinal phenotypes have been increasingly available in genome-wide association studies (GWAS) and electronic health record-based studies for identification of genetic variants that influence complex traits over time. For longitudinal binary data, there remain significant challenges in gene mapping, including misspecification of the model for phenotype distribution due to ascertainment. Here, we propose L-BRAT (Longitudinal Binary-trait Retrospective Association Test), a retrospective, generalized estimating equation-based method for genetic association analysis of longitudinal binary outcomes. We also develop RGMMAT, a retrospective, generalized linear mixed model-based association test. Both tests are retrospective score approaches in which genotypes are treated as random conditional on phenotype and covariates. They allow both static and time-varying covariates to be included in the analysis. Through simulations, we illustrated that retrospective association tests are robust to ascertainment and other types of phenotype model misspecification, and gain power over previous association methods. We applied L-BRAT and RGMMAT to a genome-wide association analysis of repeated measures of cocaine use in a longitudinal cohort. Pathway analysis implicated association with opioid signaling and axonal guidance signaling pathways. Lastly, we replicated important pathways in an independent cocaine dependence case-control GWAS. Our results illustrate that L-BRAT is able to detect important loci and pathways in a genome scan and to provide insights into genetic architecture of cocaine use.


2019 ◽  
Vol 8 (2) ◽  
pp. 275 ◽  
Author(s):  
Eun Hong ◽  
Bong Kim ◽  
Steve Cho ◽  
Jin Yang ◽  
Hyuk Choi ◽  
...  

Genome-wide association studies found genetic variations with modulatory effects for intracranial aneurysm (IA) formations in European and Japanese populations. We aimed to identify the susceptibility of single nucleotide polymorphisms (SNPs) to IA in a Korean population consisting of 250 patients, and 294 controls using the Asian-specific Axiom Precision Medicine Research Array. Twenty-nine SNPs reached a genome-wide significance threshold (5 × 10−8). The rs371331393 SNP, with a stop-gain function of ARHGAP32 (11q24.3), showed the most significant association with the risk of IA (OR = 43.57, 95% CI: 21.84–86.95; p = 9.3 × 10−27). Eight out of 29 SNPs—GBA (rs75822236), TCF24 (rs112859779), OLFML2A (rs79134766), ARHGAP32 (rs371331393), CD163L1 (rs138525217), CUL4A (rs74115822), LOC102724084 (rs75861150), and LRRC3 (rs116969723)—demonstrated sufficient statistical power greater than or equal to 0.8. Two previously reported SNPs, rs700651 (BOLL, 2q33.1) and rs6841581 (EDNRA, 4q31.22), were validated in our GWAS (Genome-wide association study). In a subsequent analysis, three SNPs showed a significant difference in expressions: the rs6741819 (RNF144A, 2p25.1) was down-regulated in the adrenal gland tissue (p = 1.5 × 10−6), the rs1052270 (TMOD1. 9q22.33) was up-regulated in the testis tissue (p = 8.6 × 10−10), and rs6841581 (EDNRA, 4q31.22) was up-regulated in both the esophagus (p = 5.2 × 10−12) and skin tissues (1.2 × 10−6). Our GWAS showed novel candidate genes with Korean-specific variations in IA formations. Large population based studies are thus warranted.


2018 ◽  
Vol 13 (5) ◽  
pp. 648-658 ◽  
Author(s):  
Yoichi Kakuta ◽  
Yosuke Kawai ◽  
Takeo Naito ◽  
Atsushi Hirano ◽  
Junji Umeno ◽  
...  

Abstract Background and Aims Genome-wide association studies [GWASs] of European populations have identified numerous susceptibility loci for Crohn’s disease [CD]. Susceptibility genes differ by ethnicity, however, so GWASs specific for Asian populations are required. This study aimed to clarify the Japanese-specific genetic background for CD by a GWAS using the Japonica array [JPA] and subsequent imputation with the 1KJPN reference panel. Methods Two independent Japanese case/control sets (Tohoku region [379 CD patients, 1621 controls] and Kyushu region [334 CD patients, 462 controls]) were included. GWASs were performed separately for each population, followed by a meta-analysis. Two additional replication sets [254 + 516 CD patients and 287 + 565 controls] were analysed for top hit single nucleotide polymorphisms [SNPs] from novel genomic regions. Results Genotype data of 4 335 144 SNPs from 713 Japanese CD patients and 2083 controls were analysed. SNPs located in TNFSF15 (rs78898421, Pmeta = 2.59 × 10−26, odds ratio [OR] = 2.10), HLA-DQB1 [rs184950714, pmeta = 3.56 × 10−19, OR = 2.05], ZNF365, and 4p14 loci were significantly associated with CD in Japanese individuals. Replication analyses were performed for four novel candidate loci [p <1 × 10−6], and rs488200 located upstream of RAP1A was significantly associated with CD [pcombined = 4.36 × 10−8, OR = 1.31]. Transcriptome analysis of CD4+ effector memory T cells from lamina propria mononuclear cells of CD patients revealed a significant association of rs488200 with RAP1A expression. Conclusions RAP1A is a novel susceptibility locus for CD in the Japanese population.


2019 ◽  
Vol 36 (5) ◽  
pp. 1517-1521
Author(s):  
Leilei Cui ◽  
Bin Yang ◽  
Nikolas Pontikos ◽  
Richard Mott ◽  
Lusheng Huang

Abstract Motivation During the past decade, genome-wide association studies (GWAS) have been used to map quantitative trait loci (QTLs) underlying complex traits. However, most GWAS focus on additive genetic effects while ignoring non-additive effects, on the assumption that most QTL act additively. Consequently, QTLs driven by dominance and other non-additive effects could be overlooked. Results We developed ADDO, a highly efficient tool to detect, classify and visualize QTLs with additive and non-additive effects. ADDO implements a mixed-model transformation to control for population structure and unequal relatedness that accounts for both additive and dominant genetic covariance among individuals, and decomposes single-nucleotide polymorphism effects as either additive, partial dominant, dominant or over-dominant. A matrix multiplication approach is used to accelerate the computation: a genome scan on 13 million markers from 900 individuals takes about 5 h with 10 CPUs. Analysis of simulated data confirms ADDO’s performance on traits with different additive and dominance genetic variance components. We showed two real examples in outbred rat where ADDO identified significant dominant QTL that were not detectable by an additive model. ADDO provides a systematic pipeline to characterize additive and non-additive QTL in whole genome sequence data, which complements current mainstream GWAS software for additive genetic effects. Availability and implementation ADDO is customizable and convenient to install and provides extensive analytics and visualizations. The package is freely available online at https://github.com/LeileiCui/ADDO. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document