scholarly journals Neuronal cell-type and circuit basis for visual predictive processing

2022 ◽  
Author(s):  
Jinmao Zou ◽  
Lawrence Huang ◽  
Lizhao Wang ◽  
Yuanyuan Xu ◽  
Chenchang Li ◽  
...  

Bayesian Brain theory suggests brain utilises predictive processing framework to interpret the noisy world. Predictive processing is essential to perception, action, cognition and psychiatric disease, but underlying neural circuit mechanisms remain undelineated. Here we show the neuronal cell-type and circuit basis for visual predictive processing in awake, head-fixed mice during self-initiated running. Preceding running, vasoactive intestinal peptide (VIP)-expressing inhibitory interneurons (INs) in primary visual cortex (V1) are robustly activated in absence of structured visual stimuli. This pre-running activation is mediated via distal top-down projections from frontal, parietal and retrosplenial areas known for motion planning, but not local excitatory inputs associated with the bottom-up pathway. Somatostatin (SST) INs show pre-running suppression and post-running activation, indicating a VIP-SST motif. Differential VIP-SST peri-running dynamics anisotropically suppress neighbouring pyramidal (Pyr) neurons, preadapting Pyr neurons to the incoming running. Our data delineate key neuron types and circuit elements of predictive processing brain employs in action and perception.

2021 ◽  
Vol 8 (3) ◽  
pp. 189-200
Author(s):  
Adel Razek

In this assessment, we have made an effort of synthesis on the role of theoretical and observational investigations in the analysis of the concepts and functioning of different natural biological and artificial phenomena. In this context, we pursued the objective of examining published works relating to the behavioral prediction of phenomena associated with its observation. We have examined examples from the literature concerning phenomena with known behaviors that associated to knowledge uncertainty as well as cases concerning phenomena with unknown and changing random behaviors linked to random uncertainty. The concerned cases are relative to brain functioning in neuroscience, modern smart industrial devices, and health care predictive endemic protocols. As predictive modeling is very concerned by the problematics relative to uncertainties that depend on the degree of matching in the link prediction-observation, we investigated first how to improve the model to match better the observation. Thus, we considered the case when the observed behavior and its model are contrasting, that implies the development of revised or amended models. Then we studied the case concerning the practice of modeling for the prediction of future behaviors of a phenomenon that is well known, and owning identified behavior. For such case, we illustrated the situation of prediction matched to observation operated in two cases. These are the Bayesian Brain theory in neuroscience and the Digital Twins industrial concept. The last investigated circumstance concerns the use of modeling for the prediction of future behaviors of a phenomenon that is not well known, or owning behavior varying arbitrary. For this situation, we studied contagion infections with an unknown mutant virus where the prediction task is very complicated and would be constrained only to adjust the principal clinical observation protocol. Keywords: prediction, observation, Bayesian, neuroscience, brain functioning, mutant virus


2013 ◽  
Vol 36 (3) ◽  
pp. 227-228 ◽  
Author(s):  
Anil K. Seth ◽  
Hugo D. Critchley

AbstractThe Bayesian brain hypothesis provides an attractive unifying framework for perception, cognition, and action. We argue that the framework can also usefully integrate interoception, the sense of the internal physiological condition of the body. Our model of “interoceptive predictive coding” entails a new view of emotion as interoceptive inference and may account for a range of psychiatric disorders of selfhood.


2021 ◽  
Author(s):  
Alexei M. Bygrave ◽  
Ayesha Sengupta ◽  
Ella P. Jackert ◽  
Mehroz Ahmed ◽  
Beloved Adenuga ◽  
...  

Synapses in the brain exhibit cell–type–specific differences in basal synaptic transmission and plasticity. Here, we evaluated cell–type–specific differences in the composition of glutamatergic synapses, identifying Btbd11, as an inhibitory interneuron–specific synapse–enriched protein. Btbd11 is highly conserved across species and binds to core postsynaptic proteins including Psd–95. Intriguingly, we show that Btbd11 can undergo liquid–liquid phase separation when expressed with Psd–95, supporting the idea that the glutamatergic post synaptic density in synapses in inhibitory and excitatory neurons exist in a phase separated state. Knockout of Btbd11 from inhibitory interneurons decreased glutamatergic signaling onto parvalbumin–positive interneurons. Further, both in vitro and in vivo, we find that Btbd11 knockout disrupts network activity. At the behavioral level, Btbd11 knockout from interneurons sensitizes mice to pharmacologically induced hyperactivity following NMDA receptor antagonist challenge. Our findings identify a cell–type–specific protein that supports glutamatergic synapse function in inhibitory interneurons–with implication for circuit function and animal behavior.


2018 ◽  
Author(s):  
Dika A. Kuljis ◽  
Khaled Zemoura ◽  
Cheryl A. Telmer ◽  
Jiseok Lee ◽  
Eunsol Park ◽  
...  

AbstractAnatomical methods for determining cell-type specific connectivity are essential to inspire and constrain our understanding of neural circuit function. We developed new genetically-encoded reagents for fluorescence-synapse labeling and connectivity analysis in brain tissue, using a fluorogen-activating protein (FAP)-or YFP-coupled, postsynaptically-localized neuroligin-1 targeting sequence (FAP/YFPpost). Sparse viral expression of FAP/YFPpost with the cell-filling, red fluorophore dTomato (dTom) enabled high-throughput, compartment-specific localization of synapses across diverse neuron types in mouse somatosensory cortex. High-resolution confocal image stacks of virally-transduced neurons were used for 3D reconstructions of postsynaptic cells and automated detection of synaptic puncta. We took advantage of the bright, far-red emission of FAPpost puncta for multichannel fluorescence alignment of dendrites, synapses, and presynaptic neurites to assess subtype-specific inhibitory connectivity onto L2 neocortical pyramidal (Pyr) neurons. Quantitative and compartment-specific comparisons show that PV inputs are the dominant source of inhibition at both the soma and across all dendritic branches examined and were particularly concentrated at the primary apical dendrite, a previously unrecognized compartment of L2 Pyr neurons. Our fluorescence-based synapse labeling reagents will facilitate large-scale and cell-type specific quantitation of changes in synaptic connectivity across development, learning, and disease states.


Nature ◽  
2021 ◽  
Vol 598 (7879) ◽  
pp. 111-119 ◽  
Author(s):  
Trygve E. Bakken ◽  
Nikolas L. Jorstad ◽  
Qiwen Hu ◽  
Blue B. Lake ◽  
Wei Tian ◽  
...  

AbstractThe primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch–seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.


2022 ◽  
Vol 15 ◽  
Author(s):  
Kyra T. Newmaster ◽  
Fae A. Kronman ◽  
Yuan-ting Wu ◽  
Yongsoo Kim

The brain is composed of diverse neuronal and non-neuronal cell types with complex regional connectivity patterns that create the anatomical infrastructure underlying cognition. Remarkable advances in neuroscience techniques enable labeling and imaging of these individual cell types and their interactions throughout intact mammalian brains at a cellular resolution allowing neuroscientists to examine microscopic details in macroscopic brain circuits. Nevertheless, implementing these tools is fraught with many technical and analytical challenges with a need for high-level data analysis. Here we review key technical considerations for implementing a brain mapping pipeline using the mouse brain as a primary model system. Specifically, we provide practical details for choosing methods including cell type specific labeling, sample preparation (e.g., tissue clearing), microscopy modalities, image processing, and data analysis (e.g., image registration to standard atlases). We also highlight the need to develop better 3D atlases with standardized anatomical labels and nomenclature across species and developmental time points to extend the mapping to other species including humans and to facilitate data sharing, confederation, and integrative analysis. In summary, this review provides key elements and currently available resources to consider while developing and implementing high-resolution mapping methods.


Neurogenesis ◽  
2015 ◽  
Vol 2 (1) ◽  
pp. e1122699 ◽  
Author(s):  
Joshua Shing Shun Li ◽  
Grace Ji-eun Shin ◽  
S Sean Millard

1998 ◽  
Vol 80 (6) ◽  
pp. 2836-2847 ◽  
Author(s):  
F. Morin ◽  
C. Beaulieu ◽  
J.-C. Lacaille

Morin, F., C. Beaulieu, and J.-C. Lacaille. Cell-specific alterations in synaptic properties of hippocampal CA1 interneurons after kainate treatment. J. Neurophysiol. 80: 2836–2847, 1998. Hippocampal sclerosis and hyperexcitability are neuropathological features of human temporal lobe epilepsy that are reproduced in the kainic acid (KA) model of epilepsy in rats. To assess directly the role of inhibitory interneurons in the KA model, the membrane and synaptic properties of interneurons located in 1) stratum oriens near the alveus (O/A) and 2) at the border of stratum radiatum and stratum lacunosum-moleculare (LM), as well as those of pyramidal cells, were examined with whole cell recordings in slices of control and KA-lesioned rats. In current-clamp recordings, intrinsic cell properties such as action potential amplitude and duration, amplitude of fast and medium duration afterhyperpolarizations, membrane time constant, and input resistance were generally unchanged in all cell types after KA treatment. In voltage-clamp recordings, the amplitude and conductance of pharmacologically isolated excitatory postsynaptic currents (EPSCs) were significantly reduced in LM interneurons of KA-treated animals but were not significantly changed in O/A and pyramidal cells. The rise time of EPSCs was not significantly changed in any cell type after KA treatment. In contrast, the decay time constant of EPSCs was significantly faster in O/A interneurons of KA-treated rats but was unchanged in LM and pyramidal cells. The amplitude and conductance of pharmacologically isolated γ-aminobutyric acid-A (GABAA) inhibitory postsynaptic currents (IPSCs) were not significantly changed in any cell type of KA-treated rats. The rise time and decay time constant of GABAA IPSCs were significantly faster in pyramidal cells of KA-treated rats but were not significantly changed in O/A and LM interneurons. These results suggest that complex alterations in synaptic currents occur in specific subpopulations of inhibitory interneurons in the CA1 region after KA lesions. A reduction of evoked excitatory drive onto inhibitory cells located at the border of stratum radiatum and stratum lacunosum-moleculare may contribute to disinhibition and polysynaptic epileptiform activity in the CA1 region. Compensatory changes, involving excitatory synaptic transmission on other interneuron subtypes and inhibitory synaptic transmission on pyramidal cells, may also take place and contribute to the residual, functional monosynaptic inhibition observed in principal cells after KA treatment.


2020 ◽  
pp. 1-21
Author(s):  
Francisco Barceló

For decades, a common assumption in cognitive neuroscience has been that prefrontal executive control is mainly engaged during target detection [Posner, M. I., & Petersen, S. E. The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42, 1990]. More recently, predictive processing theories of frontal function under the Bayesian brain hypothesis emphasize a key role of proactive control for anticipatory action selection (i.e., planning as active inference). Here, we review evidence of fast and widespread EEG and magnetoencephalographic fronto-temporo-parietal cortical activations elicited by feedback cues and target cards in the Wisconsin Card Sorting Test. This evidence is best interpreted when considering negative and positive feedback as predictive cues (i.e., sensory outcomes) for proactively updating beliefs about unknown perceptual categories. Such predictive cues inform posterior beliefs about high-level hidden categories governing subsequent response selection at target onset. Quite remarkably, these new views concur with Don Stuss' early findings concerning two broad classes of P300 cortical responses evoked by feedback cues and target cards in a computerized Wisconsin Card Sorting Test analogue. Stuss' discussion of those P300 responses—in terms of the resolution of uncertainty about response (policy) selection as well as the participants' expectancies for future perceptual or motor activities and their timing—was prescient of current predictive processing and active (Bayesian) inference theories. From these new premises, a domain-general frontoparietal cortical network is rapidly engaged during two temporarily distinct stages of inference and learning of perceptual categories that underwrite goal-directed card sorting behavior, and they each engage prefrontal executive functions in fundamentally distinct ways.


Sign in / Sign up

Export Citation Format

Share Document