scholarly journals Dual fates of exogenous tau seeds: lysosomal clearance vs. cytoplasmic amplification

2022 ◽  
Author(s):  
Sourav Kolay ◽  
Anthony R. Vega ◽  
Dana A. Dodd ◽  
Valerie A. Perez ◽  
Omar M. Kashmer ◽  
...  

Tau assembly propagation from the extracellular to intracellular space of a cell may underlie neurodegenerative tauopathies. The first step involves tau binding to heparan sulfate proteoglycans on the cell surface, followed by macropinocytosis. Pathological tau assemblies are thought to exit the vesicular compartment as seeds for replication in the cytoplasm. Tau uptake is highly efficient, but only ~1-10% of cells that take up aggregates exhibit seeding. To investigate the basis for this observation, we used fluorescently tagged full-length (FL) tau fibrils added to native U2OS cells, and biosensor cells expressing FL tau or repeat domain fused to mClover (Clo). FL tau-Clo bound tubulin, but seeds triggered its aggregation in multiple locations simultaneously in the cytoplasm, generally independent of visible exogenous aggregates. Most exogenous tau trafficked to the lysosome, but imaging revealed a small percentage that slowly and steadily accumulated in the cytosol. Intracellular expression of Gal3-mRuby, which binds intravesicular galactosides and forms puncta upon vesicle rupture, revealed no evidence of vesicle damage following tau exposure. In fact, most seeded cells had no evidence of lysosome rupture. However, live cell imaging indicated that cells with pre-existing Gal3-positive puncta exhibited seeding at a slightly higher rate than the general population, indicating a potential role for vesicle instability as a predisposing factor. Clearance of tau seeds occurred rapidly in both vesicular and cytosolic fractions. Bafilomycin inhibited vesicular clearance, whereas MG132 inhibited cytosolic clearance. Tau seeds that enter the cell thus have at least two fates: lysosomal clearance that degrades most tau, and entry into the cytosol, where seeds replicate, and are cleared by the proteasome.

2020 ◽  
Vol 92 (22) ◽  
pp. 15194-15201
Author(s):  
Shu Zeng ◽  
Shuo Wang ◽  
Xuan Xie ◽  
Si-hui Yang ◽  
Jia-hui Fan ◽  
...  

2015 ◽  
Vol 44 (32) ◽  
pp. 14323-14332 ◽  
Author(s):  
Aisling Byrne ◽  
Ciarán Dolan ◽  
Roisin D. Moriarty ◽  
Aaron Martin ◽  
Ute Neugebauer ◽  
...  

The first example of a cell permeable osmium(ii) polypyridyl peptide conjugate [Os(bpy)2(pic)arg8]10+ employed as an contrast agent for live cell imaging is reported.


2020 ◽  
Vol 6 (21) ◽  
pp. eabb0601 ◽  
Author(s):  
Gabriela Toro-Tapia ◽  
Raman M. Das

Cellular differentiation leads to the formation of specialized cell types and complex morphological variations. Often, differentiating cells transition between states by switching how they respond to the signaling environment. However, the mechanisms regulating these transitions are poorly understood. Differentiating neurons delaminate from the neuroepithelium through the regulated process of apical abscission, which mediates an acute loss of polarity and primary cilium disassembly. Using high-resolution live-cell imaging in chick neural tube, we show that these cells retain an Arl13b+ particle, which elongates and initiates intraflagellar trafficking as it transits toward the cell body, indicating primary cilium remodeling. Notably, disrupting cilia during and after remodeling inhibits axon extension and leads to axon collapse, respectively. Furthermore, cilium remodeling corresponds to a switch from a canonical to noncanonical cellular response to Shh. This work transforms our understanding of how cells can rapidly reinterpret signals to produce qualitatively different responses within the same tissue context.


2017 ◽  
Vol 41 (23) ◽  
pp. 14266-14271 ◽  
Author(s):  
Abhishek Manna ◽  
Dibyendu Sain ◽  
Nikhil Guchhait ◽  
Shyamaprosad Goswami

A cell permeable FRET based platform for dual mode ‘naked-eye’in vitroandin vivodetection of Al3+over other common ions (including trivalent ions).


2020 ◽  
Author(s):  
Travis J Chiarelli ◽  
Nicole A Grieshaber ◽  
Anders Omsland ◽  
Christopher H Remien ◽  
Scott S Grieshaber

AbstractThe obligate intracellular bacterial pathogen Chlamydia trachomatis (Ctr) is reliant on an unusual developmental cycle consisting of two cell forms termed the elementary body (EB) and the reticulate body (RB). The EB is infectious and utilizes a type III secretion system and preformed effector proteins during invasion, but does not replicate. The RB replicates in the host cell but is non-infectious. This developmental cycle is central to chlamydial pathogenesis. In this study we developed mathematical models of the chlamydial developmental cycle that account for potential factors influencing the timing of RB to EB cell type switching during infection. Our models predicted that two broad categories of regulatory signals for RB to EB development could be differentiated experimentally; an “intrinsic” cell autonomous program inherent to each RB or an “extrinsic” environmental signal to which RBs respond. To experimentally differentiate between these hypotheses, we tracked the expression of Ctr developmental specific promoters using fluorescent reporters and live cell imaging. These experiments indicated that EB production was not influenced by increased MOI or by superinfection, suggesting the cycle follows an intrinsic program that is not influenced by environmental factors. Additionally, live cell imaging of these promoter constructs revealed that EB development is a multistep process linked to RB growth rate and cell division. The formation of EBs followed a cell type gene expression progression with the promoters for euo and ihtA active in RBs, while the promoter for hctA was active in early EBs/intermediate cells and finally the promoters for the true late genes, hctB, scc2, and tarp active in the maturing EB.ImportanceChlamydia trachomatis is an obligate intracellular bacteria that can cause trachoma, cervicitis, urethritis, salpingitis, and pelvic inflammatory disease. To establish infection in host cells Chlamydia must complete a multi cell type developmental cycle. The developmental cycle consists of two specialized cells; the EB which mediates infection of new cells and the RB which replicates and eventually produces more EB cells to mediate the next round of infection. By developing and testing mathematical models to discriminate between two competing hypotheses for the nature of the signal controlling RB to EB cell type switching. We demonstrate that RB to EB development follows a cell autonomous program that does not respond to environmental cues. Additionally, we show that RB to EB development is a function of cell growth and cell division. This study serves to further our understanding of the chlamydial developmental cycle that is central to the bacterium’s pathogenesis.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4998
Author(s):  
Sangpil Yoon ◽  
Yijia Pan ◽  
Kirk Shung ◽  
Yingxiao Wang

Fluorescence resonance energy transfer (FRET)-based biosensors have advanced live cell imaging by dynamically visualizing molecular events with high temporal resolution. FRET-based biosensors with spectrally distinct fluorophore pairs provide clear contrast between cells during dual FRET live cell imaging. Here, we have developed a new FRET-based Ca2+ biosensor using EGFP and FusionRed fluorophores (FRET-GFPRed). Using different filter settings, the developed biosensor can be differentiated from a typical FRET-based Ca2+ biosensor with ECFP and YPet (YC3.6 FRET Ca2+ biosensor, FRET-CFPYPet). A high-frequency ultrasound (HFU) with a carrier frequency of 150 MHz can target a subcellular region due to its tight focus smaller than 10 µm. Therefore, HFU offers a new single cell stimulations approach for FRET live cell imaging with precise spatial resolution and repeated stimulation for longitudinal studies. Furthermore, the single cell level intracellular delivery of a desired FRET-based biosensor into target cells using HFU enables us to perform dual FRET imaging of a cell pair. We show that a cell pair is defined by sequential intracellular delivery of the developed FRET-GFPRed and FRET-CFPYPet into two target cells using HFU. We demonstrate that a FRET-GFPRed exhibits consistent 10–15% FRET response under typical ionomycin stimulation as well as under a new stimulation strategy with HFU.


2017 ◽  
Vol 22 (7) ◽  
pp. 848-858 ◽  
Author(s):  
Rishikesh Kumar Gupta ◽  
Sarpras Swain ◽  
Dinesh Kankanamge ◽  
Pantula Devi Priyanka ◽  
Ranjana Singh ◽  
...  

G protein–coupled receptors (GPCRs) are targets for designing a large fraction of the drugs in the pharmaceutical industry. For GPCR-targeting drug screening using cell-based assays, measurement of cytosolic calcium has been widely used to obtain dose–response profiles. However, it remains challenging to obtain drug-specific features due to cell-to-cell heterogeneity in drug–cell responses obtained from live cell imaging. Here, we present a framework combining live cell imaging of a cell population and a feature extraction method for classification of responses of drugs targeting GPCRs CXCR4 and α2AR. We measured the calcium dynamics using confocal microscopy and compared the responses for SDF-1α and norepinephrine. The results clearly show that the clustering patterns of responses for the two GPCRs are significantly different. Additionally, we show that different drugs targeting the same GPCR induce different calcium response signatures. We also implemented principal component analysis and k means for feature extraction and used nondominated (ND) sorting for ranking a group of drugs at various doses. The presented approach can be used to model a cell population as a mixture of subpopulations. It also offers specific advantages, such as higher spatial resolution, classification of responses, and ranking of drugs, potentially providing a platform for high-content drug screening.


Sign in / Sign up

Export Citation Format

Share Document