scholarly journals Climatic niche conservatism in a clade of disease vectors (Diptera: Phlebotominae)

2022 ◽  
Author(s):  
Emmanuel R. R. D'Agostino ◽  
Rafael Vivero ◽  
Luis Romero ◽  
Eduar Bejarano ◽  
Allen H Hurlbert ◽  
...  

Sandflies of the family Psychodidae show notable diversity in both disease vector status and climatic niche. Some species (in the subfamily Phlebotominae) transmit Leishmania parasites, responsible for the disease leishmaniasis. Other Psychodidae species do not. Psychodid species ranges can be solely tropical, confined to the temperate zones, or span both. Studying the relationship between the evolution of disease vector status and that of climatic niche affords an understanding not only of the climate conditions associated with the presence and species richness of Leishmania vectors, but also allows the study of the extent to which the climatic niches of psychodid flies are conserved, in a context with implications for global human health. We obtained observation site data, and associated climate data, for 223 psychodid species to understand which aspects of climate most closely predict distribution. Temperature and seasonality are strong determinants of species occurrence within the clade. We built a mitochondrial DNA phylogeny of Psychodidae, and found a positive relationship between pairwise genetic distance and climate niche differentiation, which indicates strong niche conservatism. This result is also supported by strong phylogenetic signals of metrics of climate differentiation. Finally, we used ancestral trait reconstruction to infer the tropicality (i.e., proportion of latitudinal range in the tropics minus the proportion of the latitudinal range in temperate areas) of ancestral species, and counted transitions to and from tropicality states, finding that tropical and temperate species respectively produced almost entirely tropical and temperate descendant species, a result consistent for vector and non-vector species. Taken together, these results imply that while vectors of Leishmania can survive in a variety of climates, their climate niches are strongly predicted by phylogeny.

Author(s):  
Oscar Zapata

Abstract Changes in climatic patterns are expected to have significant effects on health and wellbeing. However, the literature on the effect of climate on subjective wellbeing remains scant and existing studies focus mostly on developed countries or cross-country analyses. This paper aims to identify the relationship between climate conditions on happiness after controlling for individual and social characteristics. Ecuador, a geographically fragmented country with varying climate conditions across municipalities, constitutes an ideal case study to assess the effect of climate variables on happiness. We employ a cross-section analysis to identify the effect of temperature, precipitation and humidity on happiness. The paper shows that climate conditions constitute an important determinant of people's subjective wellbeing. The results also suggest that income and education attenuate the effect of temperature on happiness and that substantial differences are observed depending on whether places are hot/humid or cold/dry.


2015 ◽  
Vol 12 (3) ◽  
pp. 2787-2808 ◽  
Author(s):  
L. Pinho ◽  
C. M. Duarte ◽  
H. Marotta ◽  
A. Enrich-Prast

Abstract. The relationship between the partial pressure of carbon dioxide (pCO2) and dissolved organic carbon (DOC) concentration in Brazilian lakes, encompassing 225 samples across a wide latitudinal range in the tropics, was tested. Unlike the positive relationship reported for lake waters, which was largely based on temperate lakes, we found no significant relationship for tropical and subtropical Brazilian lakes, despite very broad ranges in both pCO2 and DOC. Closer examination showed that the strength of pCO2 vs. DOC relationships declines with increasing water temperature, suggesting substantial differences in carbon cycling in warm lakes, which must be considered when upscaling limnetic carbon cycling to global scales.


PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e6192 ◽  
Author(s):  
Norberto Martínez-Méndez ◽  
Omar Mejía ◽  
Jorge Ortega ◽  
Fausto Méndez-de la Cruz

The cold-climate hypothesis maintains that viviparity arose as a means to prevent increased egg mortality in nests owing to low temperatures, and this hypothesis represents the primary and most strongly supported explanation for the evolution of viviparity in reptiles. In this regard, certain authors have stated that viviparous species will exhibit speciation via climatic niche conservatism, with similar climatic niches being observed in allopatric sister species. However, this prediction remains to be tested with bioclimatic variables relevant to each viviparous group. In the present study, we examined climatic niche evolution in a group of North American viviparous lizards to determine whether their diversification is linked to phylogenetic niche conservatism (PNC). We evaluated the phylogenetic signal and trait evolution of individual bioclimatic variables and principal component (PC) scores of a PC analysis, along with reconstructions of ancestral climate tolerances. The results suggest that diversification of theSceloporus torquatusgroup species is associated with both niche differentiation and PNC. Furthermore, we did not observe PNC across nearly all bioclimatic variables and in PC2 and PC3. However, in Precipitation Seasonality (Bio15), in Precipitation of Coldest Quarter (Bio19) and in PC1 (weakly associated with variability of temperature), we did observe PNC. Additionally, variation of the scores along the phylogeny and Pagel’s delta (δ) >1 of PC3 suggests a fast, recent evolution to dry conditions in the clade that sustainsS. serrifer.


2016 ◽  
Vol 13 (3) ◽  
pp. 865-871 ◽  
Author(s):  
L. Pinho ◽  
C. M. Duarte ◽  
H. Marotta ◽  
A. Enrich-Prast

Abstract. The relationship between the partial pressure of carbon dioxide (pCO2) and dissolved organic carbon (DOC) concentration in Brazilian lakes, encompassing 225 samples across a wide latitudinal range in the tropics, was tested. Unlike the positive relationship reported for lake waters, which was largely based on temperate lakes, we found no significant relationship for low-latitude lakes (< 33°), despite very broad ranges in both pCO2 and DOC levels. These results suggest substantial differences in the carbon cycling of low-latitude lakes, which must be considered when upscaling limnetic carbon cycling to global scales.


2019 ◽  
Vol 25 (1) ◽  
Author(s):  
MASROOR ALI KHAN ◽  
KHALID AL GHAMDI ◽  
JAZEM A. MEHYOUB ◽  
RAKHSHAN KHAN

The focus of this study is to find the relationship between El Nino and dengue fever cases in the study area.Mosquito density was recorded with the help of light traps and through aspirators collection. Climate data were obtained from National Meteorology and Environment centre. (Year wise El Nino and La Nina data are according to NOAA & Golden Gate Weather Services). Statistical methods were used to establish the correlation coefficient between different factors. A high significant relationship was observed between Relative Humidity and Dengue fever cases, but Aedes abundance had no significant relationship with either Relative humidity and Temperature. Our conclusion is that the El Nino does not affect the dengue transmission and Aedes mosquito abundance in this region, which is supported by earlier works.


2021 ◽  
Vol 13 (11) ◽  
pp. 5918
Author(s):  
Giacomo Chiesa ◽  
Yingyue Li

Urban heat island and urban-driven climate variations are recognized issues and may considerably affect the local climatic potential of free-running technologies. Nevertheless, green design and bioclimatic early-design analyses are generally based on typical rural climate data, without including urban effects. This paper aims to define a simple approach to considering urban shapes and expected effects on local bioclimatic potential indicators to support early-design choices. Furthermore, the proposed approach is based on simplifying urban shapes to simplify analyses in early-design phases. The proposed approach was applied to a sample location (Turin, temperate climate) and five other climate conditions representative of Eurasian climates. The results show that the inclusion of the urban climate dimension considerably reduced rural HDD (heating degree-days) from 10% to 30% and increased CDD (cooling degree-days) from 70% to 95%. The results reveal the importance of including the urban climate dimension in early-design phases, such as building programming in which specific design actions are not yet defined, to support the correct definition of early-design bioclimatic analyses.


2021 ◽  
Vol 58 (1) ◽  
pp. 132-150
Author(s):  
Cody J Schmidt ◽  
Bomi K Lee ◽  
Sara McLaughlin Mitchell

Many scholars examine the relationship between climate variability and intrastate conflict onset. While empirical findings in this literature are mixed, we know less about how climate changes increase the risks for conflicts between countries. This article studies climate variability using the issue approach to world politics. We examine whether climate variability influences the onset and militarization of interstate diplomatic conflicts and whether these effects are similar across issues that involve sovereignty claims for land (territory) or water (maritime, river). We focus on two theoretical mechanisms: scarcity ( abundance) and uncertainty. We measure these concepts empirically through climate deviation (e.g. droughts/floods, heat waves/cold spells) and climate volatility (greater short-term variance in precipitation/temperature). Analyses of issue claims in the Western Hemisphere and Europe (1901–2001) show that greater deviations and volatility in climate conditions increase risks for new diplomatic conflicts and militarization of ongoing issues and that climate change acts as a trigger for revisionist states.


2019 ◽  
Vol 34 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Paul W. Miller ◽  
Thomas L. Mote ◽  
Craig A. Ramseyer

Abstract With limited groundwater reserves and few reservoirs, Caribbean islands such as Puerto Rico are largely dependent on regular rainfall to meet societal and ecological water needs. Thus, the ability to anticipate seasonal rainfall shortages, such as the 2015 drought, is particularly important, yet few reliable tools exist for this purpose. Consequently, interpolated surface precipitation observations from the Daymet archive are summarized on daily, annual, and seasonal time scales and compared to the host thermodynamic environment as characterized by the Gálvez–Davison index (GDI), a convective potential parameter designed specifically for the tropics. Complementing the Daymet precipitation totals, ≥1.1 million WSR-88D volume scans between 2002 and 2016 were analyzed for echo tops ≥ 10 000 ft (~3 km) to establish a radar-inferred precipitation activity database for Puerto Rico. The 15-yr record reveals that the GDI outperforms several midlatitude-centric thermodynamic indices, explaining roughly 25% of daily 3-km echo top (ET) activity during each of Puerto Rico’s primary seasons. In contrast, neither mean-layer CAPE, the K index, nor total totals explain more than 11% during any season. When aggregated to the seasonal level, the GDI strongly relates to 3-km ET (R2 = 0.65) and Daymet precipitation totals (R2 = 0.82) during the early rainfall season (ERS; April–July), with correlations weaker outside of this period. The 4-month ERS explains 51% (41%) of the variability to Puerto Rico’s annual rainfall during exceptionally wet (dry) years. These findings are valuable for climate downscaling studies predicting Puerto Rico’s hydroclimate in future atmospheric states, and they could potentially be adapted for operational seasonal precipitation forecasting.


2014 ◽  
Vol 281 (1779) ◽  
pp. 20133017 ◽  
Author(s):  
Tatsuya Amano ◽  
Robert P. Freckleton ◽  
Simon A. Queenborough ◽  
Simon W. Doxford ◽  
Richard J. Smithers ◽  
...  

To generate realistic projections of species’ responses to climate change, we need to understand the factors that limit their ability to respond. Although climatic niche conservatism, the maintenance of a species’s climatic niche over time, is a critical assumption in niche-based species distribution models, little is known about how universal it is and how it operates. In particular, few studies have tested the role of climatic niche conservatism via phenological changes in explaining the reported wide variance in the extent of range shifts among species. Using historical records of the phenology and spatial distribution of British plants under a warming climate, we revealed that: (i) perennial species, as well as those with weaker or lagged phenological responses to temperature, experienced a greater increase in temperature during flowering (i.e. failed to maintain climatic niche via phenological changes); (ii) species that failed to maintain climatic niche via phenological changes showed greater northward range shifts; and (iii) there was a complementary relationship between the levels of climatic niche conservatism via phenological changes and range shifts. These results indicate that even species with high climatic niche conservatism might not show range shifts as instead they track warming temperatures during flowering by advancing their phenology.


Sign in / Sign up

Export Citation Format

Share Document