scholarly journals Multi-omics reveals principles of gene regulation and pervasive non-productive transcription in the human cytomegalovirus genome

2022 ◽  
Author(s):  
Christopher Sebastian Jürges ◽  
Manivel Lodha ◽  
Vu Thuy Khanh Le-Trilling ◽  
Pranjali Bhandare ◽  
Elmar Wolf ◽  
...  

For decades, human cytomegalovirus (HCMV) was thought to express ≈200 viral proteins during lytic infection. In recent years, systems biology approaches uncovered hundreds of additional viral gene products and suggested thousands of viral sites of transcription initiation. Despite all available data, the molecular mechanisms of HCMV gene regulation remain poorly understood. Here, we provide a unifying model of productive HCMV gene expression employing transcription start site profiling combined with metabolic RNA labeling as well as integrative computational analysis of previously published big data. This approach defined the expression of >2,600 high confidence viral transcripts and explained the complex kinetics of viral protein expression by cumulative effects of translation of incoming virion-associated RNA, multiple transcription start sites with distinct kinetics per viral open reading frame, and differences in viral protein stability. Most importantly, we identify pervasive transcription of transient RNAs as a common feature of this large DNA virus with its human host.

Author(s):  
Dia N Bagchi ◽  
Anna M Battenhouse ◽  
Daechan Park ◽  
Vishwanath R Iyer

Abstract Transcription start sites (TSS) in eukaryotes are characterized by a nucleosome-depleted region (NDR), which appears to be flanked upstream and downstream by strongly positioned nucleosomes incorporating the histone variant H2A.Z. H2A.Z associates with both active and repressed TSS and is important for priming genes for rapid transcriptional activation. However, the determinants of H2A.Z occupancy at specific nucleosomes and its relationship to transcription initiation remain unclear. To further elucidate the specificity of H2A.Z, we determined its genomic localization at single nucleosome resolution, as well as the localization of its chromatin remodelers Swr1 and Ino80. By analyzing H2A.Z occupancy in conjunction with RNA expression data that captures promoter-derived antisense initiation, we find that H2A.Z’s bimodal incorporation on either side of the NDR is not a general feature of TSS, but is specifically a marker for bidirectional transcription, such that the upstream flanking −1 H2A.Z-containing nucleosome is more appropriately considered as a +1 H2A.Z nucleosome for antisense transcription. The localization of H2A.Z almost exclusively at the +1 nucleosome suggests that a transcription-initiation dependent process could contribute to its specific incorporation.


1995 ◽  
Vol 15 (1) ◽  
pp. 87-93 ◽  
Author(s):  
D Soldati ◽  
J C Boothroyd

The recent development of an efficient transfection system for the apicomplexan Toxoplasma gondii allows a comprehensive dissection of the elements involved in gene transcription in this obligate intracellular parasite. We demonstrate here that for the SAG1 gene, a stretch of six repeated sequences in the region 35 to 190 bp upstream of the first of two transcription start sites is essential for efficient and accurate transcription initiation. This repeat element shows characteristics of a selector in determining the position of the transcription start sites.


2020 ◽  
Author(s):  
D.E. Goszczynski ◽  
M.M. Halstead ◽  
A.D. Islas-Trejo ◽  
H. Zhou ◽  
P.J. Ross

ABSTRACTCharacterizing transcription start sites is essential for understanding the regulatory mechanisms that control gene expression. Recently, a new bovine genome assembly (ARS-UCD1.2) with high continuity, accuracy, and completeness was released; however, the functional annotation of the bovine genome lacks precise transcription start sites and includes a low number of transcripts in comparison to human and mouse. Using the RAMPAGE approach, this study identified transcription start sites at high resolution in a large collection of bovine tissues. We found several known and novel transcription start sites attributed to promoters of protein coding and lncRNA genes that were validated through experimental and in silico evidence. With these findings, the annotation of transcription start sites in cattle reached a level comparable to the mouse and human genome annotations. In addition, we identified and characterized transcription start sites for antisense transcripts derived from bidirectional promoters, potential lncRNAs, mRNAs, and pre-miRNAs. We also analyzed the quantitative aspects of RAMPAGE data for producing a promoter activity atlas, reaching highly reproducible results comparable to traditional RNA-Seq. Lastly, gene co-expression networks revealed an impressive use of tissue-specific promoters, especially between brain and testicle, which expressed several genes in common from alternate transcription start sites. Regions surrounding co-expressed modules were enriched in binding factor motifs representative of their tissues. This annotation will be highly useful for future studies on expression control in cattle and other species. Furthermore, these data provide significant insight into transcriptional activity for a comprehensive set of tissues.


2018 ◽  
Author(s):  
Kin Chung Lam ◽  
Ho-Ryun Chung ◽  
Giuseppe Semplicio ◽  
Vivek Bhardwaj ◽  
Shantanu S. Iyer ◽  
...  

AbstractNucleosomal organization at gene promoters is critical for transcription, with a nucleosome-depleted region (NDR) at transcription start sites (TSSs) being required for transcription initiation. How NDR and the precise positioning of the +1 nucleosome is maintained on active genes remains unclear. Here, we report that the Drosophila Non-Specific Lethal (NSL) complex is necessary to maintain this stereotypical nucleosomal organization at promoters. Upon NSL1 depletion, nucleosomes invade the NDRs at TSSs of NSL-bound genes. NSL complex member NSL3 binds to TATA-less promoters in a sequence-dependent manner. The NSL complex interacts with the NURF chromatin remodeling complex and is necessary and sufficient to recruit NURF to target promoters. The NSL complex is not only essential for transcription but is required for accurate TSS selection for genes with multiple TSSs. Further, loss of NSL complex leads to an increase in transcriptional noise. Thus, the NSL complex establishes a canonical nucleosomal organization that enables transcription and determines TSS fidelity.


2019 ◽  
Vol 47 (13) ◽  
pp. 6714-6725 ◽  
Author(s):  
Chen Chen ◽  
Jie Shu ◽  
Chenlong Li ◽  
Raj K Thapa ◽  
Vi Nguyen ◽  
...  

Abstract SPT6 is a conserved elongation factor that is associated with phosphorylated RNA polymerase II (RNAPII) during transcription. Recent transcriptome analysis in yeast mutants revealed its potential role in the control of transcription initiation at genic promoters. However, the mechanism by which this is achieved and how this is linked to elongation remains to be elucidated. Here, we present the genome-wide occupancy of Arabidopsis SPT6-like (SPT6L) and demonstrate its conserved role in facilitating RNAPII occupancy across transcribed genes. We also further demonstrate that SPT6L enrichment is unexpectedly shifted, from gene body to transcription start site (TSS), when its association with RNAPII is disrupted. Protein domains, required for proper function and enrichment of SPT6L on chromatin, are subsequently identified. Finally, our results suggest that recruitment of SPT6L at TSS is indispensable for its spreading along the gene body during transcription. These findings provide new insights into the mechanisms underlying SPT6L recruitment in transcription and shed light on the coordination between transcription initiation and elongation.


Genetics ◽  
2020 ◽  
Vol 215 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Yuankai Dong ◽  
S. V. Satya Prakash Avva ◽  
Mukesh Maharjan ◽  
Janice Jacobi ◽  
Craig M. Hart

BEAF (Boundary Element-Associated Factor) was originally identified as a Drosophila melanogaster chromatin domain insulator-binding protein, suggesting a role in gene regulation through chromatin organization and dynamics. Genome-wide mapping found that BEAF usually binds near transcription start sites, often of housekeeping genes, suggesting a role in promoter function. This would be a nontraditional role for an insulator-binding protein. To gain insight into molecular mechanisms of BEAF function, we identified interacting proteins using yeast two-hybrid assays. Here, we focus on the transcription factor Serendipity δ (Sry-δ). Interactions were confirmed in pull-down experiments using bacterially expressed proteins, by bimolecular fluorescence complementation, and in a genetic assay in transgenic flies. Sry-δ interacted with promoter-proximal BEAF both when bound to DNA adjacent to BEAF or > 2-kb upstream to activate a reporter gene in transient transfection experiments. The interaction between BEAF and Sry-δ was detected using both a minimal developmental promoter (y) and a housekeeping promoter (RpS12), while BEAF alone strongly activated the housekeeping promoter. These two functions for BEAF implicate it in playing a direct role in gene regulation at hundreds of BEAF-associated promoters.


2008 ◽  
Vol 294 (3) ◽  
pp. H1371-H1380 ◽  
Author(s):  
Xiaobin Luo ◽  
Jiening Xiao ◽  
Huixian Lin ◽  
Yanjie Lu ◽  
Baofeng Yang ◽  
...  

The long QT syndrome genes human ether-a-go-go-related gene ( HERG1) and voltage-gated K+ channel, KQT-like subfamily, member 1, gene ( KCNQ1), encoding K+ channels critical to the repolarization rate and repolarization reserve in cardiac cells, and thereby the likelihood of arrhythmias, are both composed of two isoforms: HERG1a and HERG1b and KCNQ1a and KCNQ1b, respectively. Expression of these genes is dynamic, depending on the differentiation status and disease states. We identified their core promoter regions and transcription start sites. Our data suggest that HERG1a and HERG1b, and KCNQ1a and KCNQ1b, represent independent transcripts instead of being alternatively spliced variants of the same gene, for they each have their own transcription start sites and their own promoter regions. We obtained data pointing to the potential role of stimulating protein 1 (Sp1) in the transactivation of these genes. We compared expression profiling of these genes across a variety of human tissues. Consistent with the general lack of cis elements for cardiac-specific transcription factors and the presence of multiple sites for ubiquitous Sp1 sites in the core promoter regions of HERG1a/HERG1b and KCNQ1a/KCNQ1b genes, the transcripts demonstrated widespread distribution across a variety of human tissues. We further revealed that the mRNA levels of all HERG1 and KCNQ1 isoforms were asymmetrically distributed within the heart, being more abundant in the right atria and ventricles relative to the left atria and ventricles. These findings open up an opportunity for studying interventricular gradients of slow and rapid delayed rectifier K+ current and of cardiac repolarization as well. Our study might help us understand the molecular mechanisms for arrhythmias since heterogeneity of ion channel activities is an important substrate for arrhythmogenesis.


1999 ◽  
Vol 63 (4) ◽  
pp. 923-967 ◽  
Author(s):  
Alberto J. L. Macario ◽  
Marianne Lange ◽  
Birgitte K. Ahring ◽  
Everly Conway De Macario

SUMMARY The field covered in this review is new; the first sequence of a gene encoding the molecular chaperone Hsp70 and the first description of a chaperonin in the archaea were reported in 1991. These findings boosted research in other areas beyond the archaea that were directly relevant to bacteria and eukaryotes, for example, stress gene regulation, the structure-function relationship of the chaperonin complex, protein-based molecular phylogeny of organisms and eukaryotic-cell organelles, molecular biology and biochemistry of life in extreme environments, and stress tolerance at the cellular and molecular levels. In the last 8 years, archaeal stress genes and proteins belonging to the families Hsp70, Hsp60 (chaperonins), Hsp40(DnaJ), and small heat-shock proteins (sHsp) have been studied. The hsp70(dnaK), hsp40(dnaJ), and grpE genes (the chaperone machine) have been sequenced in seven, four, and two species, respectively, but their expression has been examined in detail only in the mesophilic methanogen Methanosarcina mazei S-6. The proteins possess markers typical of bacterial homologs but none of the signatures distinctive of eukaryotes. In contrast, gene expression and transcription initiation signals and factors are of the eucaryal type, which suggests a hybrid archaeal-bacterial complexion for the Hsp70 system. Another remarkable feature is that several archaeal species in different phylogenetic branches do not have the gene hsp70(dnaK), an evolutionary puzzle that raises the important question of what replaces the product of this gene, Hsp70(DnaK), in protein biogenesis and refolding and for stress resistance. Although archaea are prokaryotes like bacteria, their Hsp60 (chaperonin) family is of type (group) II, similar to that of the eukaryotic cytosol; however, unlike the latter, which has several different members, the archaeal chaperonin system usually includes only two (in some species one and in others possibly three) related subunits of ∼60 kDa. These form, in various combinations depending on the species, a large structure or chaperonin complex sometimes called the thermosome. This multimolecular assembly is similar to the bacterial chaperonin complex GroEL/S, but it is made of only the large, double-ring oligomers each with eight (or nine) subunits instead of seven as in the bacterial complex. Like Hsp70(DnaK), the archaeal chaperonin subunits are remarkable for their evolution, but for a different reason. Ubiquitous among archaea, the chaperonins show a pattern of recurrent gene duplication—hetero-oligomeric chaperonin complexes appear to have evolved several times independently. The stress response and stress tolerance in the archaea involve chaperones, chaperonins, other heat shock (stress) proteins including sHsp, thermoprotectants, the proteasome, as yet incompletely understood thermoresistant features of many molecules, and formation of multicellular structures. The latter structures include single- and mixed-species (bacterial-archaeal) types. Many questions remain unanswered, and the field offers extraordinary opportunities owing to the diversity, genetic makeup, and phylogenetic position of archaea and the variety of ecosystems they inhabit. Specific aspects that deserve investigation are elucidation of the mechanism of action of the chaperonin complex at different temperatures, identification of the partners and substitutes for the Hsp70 chaperone machine, analysis of protein folding and refolding in hyperthermophiles, and determination of the molecular mechanisms involved in stress gene regulation in archaeal species that thrive under widely different conditions (temperature, pH, osmolarity, and barometric pressure). These studies are now possible with uni- and multicellular archaeal models and are relevant to various areas of basic and applied research, including exploration and conquest of ecosystems inhospitable to humans and many mammals and plants.


2007 ◽  
Vol 81 (19) ◽  
pp. 10316-10328 ◽  
Author(s):  
Magdalena Krzyzaniak ◽  
Michael Mach ◽  
William J. Britt

ABSTRACT The virion envelope of human cytomegalovirus (HCMV) is complex and consists of an incompletely defined number of glycoproteins. The gM/gN protein complex is the most abundant protein component of the envelope. Studies have indicated that deletion of the viral gene encoding either gM or gN is a lethal mutation. Analysis of the amino acid sequence of gM disclosed a C-terminal acidic cluster of amino acids and a tyrosine-containing trafficking motif, both of which are well-described trafficking/sorting signals in the cellular secretory pathway. To investigate the roles of these signals in the trafficking of the gM/gN complex during virus assembly, we made a series of gM (UL100 open reading frame) mutants in the AD169 strain of HCMV. Mutant viruses that lacked the entire C-terminal cytoplasmic tail of gM were not viable, suggesting that the cytoplasmic tail of gM is essential for virus replication. In addition, the gM mutant protein lacking the cytoplasmic domain exhibited decreased protein stability. Mutant viruses with a deletion of the acidic cluster or alanine substitutions in tyrosine-based motifs were viable but exhibited a replication-impaired phenotype suggestive of a defect in virion assembly. Analysis of these mutant gMs using static immunofluorescence and fluorescence recovery after photobleaching demonstrated delayed kinetics of intracellular localization of the gM/gN protein to the virus assembly compartment compared to the wild-type protein. These data suggest an important role of the glycoprotein gM during virus assembly, particularly in the dynamics of gM trafficking during viral-particle assembly.


Sign in / Sign up

Export Citation Format

Share Document