scholarly journals Establishment of a transparent soil system to study Bacillus subtilis chemical ecology

2022 ◽  
Author(s):  
Carlos N Lozano-Andrade ◽  
Carla G Nogueira ◽  
Mario Wibowo ◽  
Akos T Kovacs

Bacterial secondary metabolites are structurally diverse molecules that drive microbial interaction by altering growth, cell differentiation, and signaling. Bacillus subtilis, a Gram-positive soil-dwelling bacterium, produces a wealth of secondary metabolites, among them, lipopeptides have been vastly studied by their antimicrobial, antitumor, and surfactant activities. However, the natural functions of secondary metabolites in the lifestyles of the producing organism remain less explored under natural conditions, i.e. in soil. Here, we describe a hydrogel-based transparent soil system to investigate B. subtilis chemical ecology under controllable soil-like conditions. The transparent soil matrix allows the growth of B. subtilis and other isolates gnotobiotically and under nutrient-controlled conditions. Additionally, we show that transparent soil allows the detection of lipopeptides production and dynamics by HPLC-MS and MALDI-MS imaging, along with fluorescence imaging of 3-dimensional bacterial assemblages. We anticipate that this affordable and highly controllable system will promote bacterial chemical ecology research and help to elucidate microbial interactions driven by secondary metabolites.

2009 ◽  
Vol 27 (No. 3) ◽  
pp. 203-209 ◽  
Author(s):  
A. Šrobárová ◽  
Š. Eged ◽  
J. Teixeira Da Silva ◽  
A. Ritieni ◽  
A. Santini

Fusaric acid (FA) is one of the most important secondary metabolites produced by <I>Fusarium oxysporum</I> (Schlecht) (FO), <I>F. solani</I> (Mart.) Appel & Wollenweber, and <I>F. moniliforme</I> Sheldon. It is toxic to humans, many plants, and microorganisms and it enhances the toxicity of fumonisin and trichothecene. A simple and rapid method for fusaric acid (FA) screening in <I>Fusarium</I> isolates was developed. In this study, several strains of <I>Fusarium oxysporum</I> were tested for their ability to produce FA by using a suitable race of <I>Bacillus subtilis</I> as the bioassay. A modified method using small agar blocks with the fungus producing FA was applied in the screening test. FA standard and <I>F. culmorum</I> were used as controls. The experimental <I>F. oxysporum</I> isolates and FA standard produced transparent zones on the plates with <I>Bacillus subtilis</I>. The differences in size of the transparent zones corresponded to the quantity of FA when thin-layer chromatography was used.


2006 ◽  
Vol 54 (11-12) ◽  
pp. 421-428 ◽  
Author(s):  
T. Kakimolo ◽  
Y. Imai ◽  
N. Funamizu ◽  
T. Takakuwa ◽  
M. Kunimoto

Bio-Toilet is the name of a dry closet or composting toilet using sawdust as an artificial soil matrix for bioconversion of human excrement into compost. Since feces and urine contain several chemicals such as pharmaceutical residues and endocrine disruptors and they may still remain in compost after biological reaction in the Bio-Toilet, it is required to examine the possibility of soil and/or groundwater pollution by applying compost to a soil system in farmland. In this study, toxicity of Bio-Toilet compost was evaluated by measuring the viability of human neuroblast (NB-1). The bio-assay was applied to the water extract of compost from the Bio-Toilets which are in practical use in Japan. The assay results showed that (1) the extract of feces showed no toxicity, and the extracts of unused sawdust had no or low level toxicity and (2) the extracts of composts had heavier toxicity than unused sawdust. These results implied that some chemicals that have toxicity were generated by biological reactions or accumulated in toilet system. The bio-assay results with fractionated organic matter by its molecular weight showed that the small molecular weight fraction had stronger toxicity than other fractions. The effect of inorganic matter on toxicity was examined by comparing the dose-response relationship of the extracts of compost with positive control with 1M of sodium chloride solution. The comparison showed that sodium concentration in the extract was too low to develop the toxicity and the effect of inorganic matter could be neglected in this study.


mSystems ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Kat Steinke ◽  
Omkar S. Mohite ◽  
Tilmann Weber ◽  
Ákos T. Kovács

ABSTRACT Microbes produce a plethora of secondary (or specialized) metabolites that, although not essential for primary metabolism, benefit them to survive in the environment, communicate, and influence cell differentiation. Biosynthetic gene clusters (BGCs), responsible for the production of these secondary metabolites, are readily identifiable on bacterial genome sequences. Understanding the phylogeny and distribution of BGCs helps us to predict the natural product synthesis ability of new isolates. Here, we examined 310 genomes from the Bacillus subtilis group, determined the inter- and intraspecies patterns of absence/presence for all BGCs, and assigned them to defined gene cluster families (GCFs). This allowed us to establish patterns in the distribution of both known and unknown products. Further, we analyzed variations in the BGC structures of particular families encoding natural products, such as plipastatin, fengycin, iturin, mycosubtilin, and bacillomycin. Our detailed analysis revealed multiple GCFs that are species or clade specific and a few others that are scattered within or between species, which will guide exploration of the chemodiversity within the B. subtilis group. Surprisingly, we discovered that partial deletion of BGCs and frameshift mutations in selected biosynthetic genes are conserved within phylogenetically related isolates, although isolated from around the globe. Our results highlight the importance of detailed genomic analysis of BGCs and the remarkable phylogenetically conserved erosion of secondary metabolite biosynthetic potential in the B. subtilis group. IMPORTANCE Members of the B. subtilis species complex are commonly recognized producers of secondary metabolites, among those, the production of antifungals, which makes them promising biocontrol strains. While there are studies examining the distribution of well-known secondary metabolites in Bacilli, intraspecies clade-specific distribution has not been systematically reported for the B. subtilis group. Here, we report the complete biosynthetic potential within the B. subtilis group to explore the distribution of the biosynthetic gene clusters and to reveal an exhaustive phylogenetic conservation of secondary metabolite production within Bacillus that supports the chemodiversity within this species complex. We identify that certain gene clusters acquired deletions of genes and particular frameshift mutations, rendering them inactive for secondary metabolite biosynthesis, a conserved genetic trait within phylogenetically conserved clades of certain species. The overview guides the assignment of the secondary metabolite production potential of newly isolated Bacillus strains based on genome sequence and phylogenetic relatedness.


2017 ◽  
Vol 8 (2) ◽  
pp. 645-653 ◽  
Author(s):  
Abdullah Rasyid

Bohadschia sp. is one of the sea cucumber species that has potential to be developed as a source of antibacterial from the sea. Samples of sea cucumber Bohadschia sp. used in this study collected from the Ratai bay waters, Lampung. This study aims to determine the type of secondary metabolites, antibacterial activity and compound composition analysis containing in the sea cucumber extract. Identification of secondary metabolites by observation of color reactions, precipitation and foam. The method used to antibacterial activity test was the agar diffusion method, while identification of the composition of compounds performed with Gas Chromatogaphy-Mass Spectroscopy (GC-MS) method.Top of FormThe results showed that the type of secondary metabolites contained in the extract of sea cucumber Bohadschia sp. were steroids and saponins. The extract of sea cucumber Bohadschia sp. showed antibacterial activity against Bacillus subtilis and Vibrio eltor. Results of GC-MS were 12 compounds and have a similarity index same or more than 90%. All compounds consist of organosilicon cyclic, fatty acid, steroid, cyclo alkene and alkena. The compound with biggest abundance was cholest-5-en-3-yl nonanoate (4.89%) and retention time was 37.370 minutes.


2020 ◽  
Vol 140 ◽  
pp. 104122 ◽  
Author(s):  
Tingting Li ◽  
Jiaquan Tang ◽  
Valliappan Karuppiah ◽  
Yaqian Li ◽  
Nan Xu ◽  
...  

2014 ◽  
Vol 81 (4) ◽  
pp. 1502-1512 ◽  
Author(s):  
Philipp Engel ◽  
Maria I. Vizcaino ◽  
Jason M. Crawford

ABSTRACTSecondary metabolites produced by nonribosomal peptide synthetase (NRPS) or polyketide synthase (PKS) pathways are chemical mediators of microbial interactions in diverse environments. However, little is known about their distribution, evolution, and functional roles in bacterial symbionts associated with animals. A prominent example is colibactin, a largely unknown family of secondary metabolites produced byEscherichia colivia a hybrid NRPS-PKS biosynthetic pathway that inflicts DNA damage upon eukaryotic cells and contributes to colorectal cancer and tumor formation in the mammalian gut. Thus far, homologs of this pathway have only been found in closely relatedEnterobacteriaceae, while a divergent variant of this gene cluster was recently discovered in a marine alphaproteobacterialPseudovibriostrain. Herein, we sequenced the genome ofFrischella perraraPEB0191, a bacterial gut symbiont of honey bees and identified a homologous colibactin biosynthetic pathway related to those found inEnterobacteriaceae. We show that the colibactin genomic island (GI) has conserved gene synteny and biosynthetic module architecture acrossF. perrara,Enterobacteriaceae, and thePseudovibriostrain. Comparative metabolomics analyses ofF. perraraandE. colifurther reveal that these two bacteria produce related colibactin pathway-dependent metabolites. Finally, we demonstrate thatF. perrara, likeE. coli, causes DNA damage in eukaryotic cellsin vitroin a colibactin pathway-dependent manner. Together, these results support that divergent variants of the colibactin biosynthetic pathway are widely distributed among bacterial symbionts, producing related secondary metabolites and likely endowing its producer with functional capabilities important for diverse symbiotic associations.


Sign in / Sign up

Export Citation Format

Share Document