Introduction: Enzymes. Cofactors/Coenzymes. Primary and Secondary Metabolites. Natural Products and their Functions. Plant Chemical Ecology. Biosynthesis. Metabolic Pathways

Author(s):  
Sunil Kumar Talapatra ◽  
Bani Talapatra
Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 369
Author(s):  
Marcus Krüger ◽  
Peter Richter ◽  
Sebastian M. Strauch

Nature provides a unique diversity of primary and secondary metabolites [...]


2020 ◽  
Vol 15 (9) ◽  
pp. 1934578X2095143
Author(s):  
Qianqian He ◽  
Shuang Miao ◽  
Na Ni ◽  
Yuqing Man ◽  
Kaikai Gong

Marine sponges, which belong to the phylum Porifera (Metazoa), are considered the single best source of marine natural products. Among them, members of the genus Aaptos are attractive targets for marine natural product research owing to their abundant biogenetic ability to produce aaptamine derivatives. Apart from aaptamine alkaloids, there are also reports of other compounds from Aaptos sponges. This work reviews the secondary metabolites isolated from Aaptos species from 1982 to 2020, with 46 citations referring to 62 compounds (47 for aaptamines and 15 for others). The emphasis is placed on the structure of the organic molecules, relevant biological activities, chemical ecology aspects, and biosynthesis studies, which are described in the classifications of aaptamines and other compounds in the order of the published year.


2021 ◽  
Author(s):  
Stella O. Bruce ◽  
Felix A. Onyegbule

Natural products are in the form of primary and secondary metabolites and are isolated chemical compounds or substances from living organisms. Terpenes, Phenolic compounds, and Nitrogen-containing compounds are secondary metabolites. The biosyntheses of secondary metabolites are derived from primary metabolism pathways, which consist of a tricarboxylic acid cycle (TCA), methylerythritol phosphate pathway (MEP), mevalonic and shikimic acid pathway. This chapter provides an overview of the diversity of secondary metabolites in plants, their multiple biological functions, and multi-faceted cultural history.


2020 ◽  
Vol 19 (31) ◽  
pp. 2868-2918 ◽  
Author(s):  
Chengfang Yang ◽  
Rui Qian ◽  
Yao Xu ◽  
Junxi Yi ◽  
Yiwen Gu ◽  
...  

: Actinomycetes is an abundant resource for discovering a large number of lead compounds, which play an important role in microbial drug discovery. Compared to terrestrial microorganisms, marine actinomycetes have unique metabolic pathways because of their special living environment, which has the potential to produce a variety of bioactive substances. In this paper, secondary metabolites isolated from marine actinomycetes are reviewed (2013-2018), most of which exhibited cytotoxic, antibacterial, and antiviral biological activities.


1988 ◽  
Vol 20 (8-9) ◽  
pp. 167-178
Author(s):  
O. M. Skulberg

Off-flavour substances may be regarded as a resource which can be used to study special ecological mechanisms. Relevant research on off-flavours is inextricably combined with the study of perception, ethology, genetic control etc. The chemicals concerned are commonly perceived by the senses of olfaction and gustation. Thus research on the chemical ecology of off-flavour substances in the aquatic environment involves the study of a variety of disciplines. For example the biochemistry of the relevant substances and appropriate metabolic pathways must be considered. Chemical properties are important for the behaviour of the substances. The production of off-flavours by organisms is related to phenological circumstances. The biotic effects of ecologically significant substances are dependent on several environmental factors. This paper draws attention to the possible application of fundamental research in this area to selected problems of ecological importance.


2019 ◽  
Vol 20 (7) ◽  
pp. 573-587
Author(s):  
Alyaa Nasr ◽  
Tehmina Saleem Khan ◽  
Shi-Ping Huang ◽  
Bin Wen ◽  
Jian-Wen Shao ◽  
...  

Background: Eucalyptus belongs to the Myrtaceae family. It is the most planted hardwood forest crop worldwide, representing a global renewable resource of fiber, pharmaceuticals and energy. Objective: To compare the five species, E. maidenii, E. robusta, E. citriodora, E. tereticornis and E. camaldulensis, seeking for the richest source of nutrients and pharmaceuticals. Methodology: Eucalyptus samples were subjected to some chemical determinations for both primary and secondary metabolites to verify their nutritional and pharmaceutical importance related to different extracts. GC-MS analysis was applied to detect the presence of some individual phenolic constituents in their leaves. Results: E. robusta recorded the maximum contents of carbohydrates (40.07%) and protein (31.91%). While E. camaldulensis contained the highest contents of total phenolic compounds (46.56 mg/g), tannins (40.01 mg/g) and antioxidant activities assayed by the phosphomolybednum method (57.60 mg/g), followed by E. citridora. However, E. tereticornis exhibited the highest reducing power ability (151.23 mg/g). The GC-MS highlighted 20 phenolic constituents and antioxidants which varied in their abundance in Eucalyptus leaves, 8 individual phenolics (hydroquinone, hesperitin, pyrogallol, resorcinol, protocatechuic acid, naringenin, chlorogenic acid and catechin) were maximally recorded with E. camaldulensis and secondly, with E. citridora in case of at least 5 components. Nevertheless, gallic and quinic acids were more abundant in the leaves of E. tereticornis, which may explain its high corresponding reducing powers. Conclusion: Acetone-water combination has enhanced phenolics extraction from Eucalyptus tissues. This is the first report aiming to compare between the aforementioned Eucalyptus species highlighting either their nutritional or medicinal importance.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 248
Author(s):  
Chang Ha Park ◽  
Hyeon Ji Yeo ◽  
Ye Jin Kim ◽  
Bao Van Nguyen ◽  
Ye Eun Park ◽  
...  

This study aimed to elucidate the variations in primary and secondary metabolites during Lycorisradiata flower development using high performance liquid chromatography (HPLC) and gas chromatography time-of-flight mass spectrometry (GC-TOFMS). The result showed that seven carotenoids, seven phenolic acids, three anthocyanins, and galantamine were identified in the L. radiata flowers. Most secondary metabolite levels gradually decreased according to the flower developmental stages. A total of 51 metabolites, including amines, sugars, sugar intermediates, sugar alcohols, amino acids, organic acids, phenolic acids, and tricarboxylic acid (TCA) cycle intermediates, were identified and quantified using GC-TOFMS. Among the hydrophilic compounds, most amino acids increased during flower development; in contrast, TCA cycle intermediates and sugars decreased. In particular, glutamine, asparagine, glutamic acid, and aspartic acid, which represent the main inter- and intracellular nitrogen carriers, were positively correlated with the other amino acids and were negatively correlated with the TCA cycle intermediates. Furthermore, quantitation data of the 51 hydrophilic compounds were subjected to partial least-squares discriminant analyses (PLS-DA) to assess significant differences in the metabolites of L. radiata flowers from stages 1 to 4. Therefore, this study will serve as the foundation for a biochemical approach to understand both primary and secondary metabolism in L. radiata flower development.


Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 107
Author(s):  
Rafael de Felício ◽  
Patricia Ballone ◽  
Cristina Freitas Bazzano ◽  
Luiz F. G. Alves ◽  
Renata Sigrist ◽  
...  

Bacterial genome sequencing has revealed a vast number of novel biosynthetic gene clusters (BGC) with potential to produce bioactive natural products. However, the biosynthesis of secondary metabolites by bacteria is often silenced under laboratory conditions, limiting the controlled expression of natural products. Here we describe an integrated methodology for the construction and screening of an elicited and pre-fractionated library of marine bacteria. In this pilot study, chemical elicitors were evaluated to mimic the natural environment and to induce the expression of cryptic BGCs in deep-sea bacteria. By integrating high-resolution untargeted metabolomics with cheminformatics analyses, it was possible to visualize, mine, identify and map the chemical and biological space of the elicited bacterial metabolites. The results show that elicited bacterial metabolites correspond to ~45% of the compounds produced under laboratory conditions. In addition, the elicited chemical space is novel (~70% of the elicited compounds) or concentrated in the chemical space of drugs. Fractionation of the crude extracts further evidenced minor compounds (~90% of the collection) and the detection of biological activity. This pilot work pinpoints strategies for constructing and evaluating chemically diverse bacterial natural product libraries towards the identification of novel bacterial metabolites in natural product-based drug discovery pipelines.


Sign in / Sign up

Export Citation Format

Share Document