scholarly journals Gut Symbionts from Distinct Hosts Exhibit Genotoxic Activity via Divergent Colibactin Biosynthesis Pathways

2014 ◽  
Vol 81 (4) ◽  
pp. 1502-1512 ◽  
Author(s):  
Philipp Engel ◽  
Maria I. Vizcaino ◽  
Jason M. Crawford

ABSTRACTSecondary metabolites produced by nonribosomal peptide synthetase (NRPS) or polyketide synthase (PKS) pathways are chemical mediators of microbial interactions in diverse environments. However, little is known about their distribution, evolution, and functional roles in bacterial symbionts associated with animals. A prominent example is colibactin, a largely unknown family of secondary metabolites produced byEscherichia colivia a hybrid NRPS-PKS biosynthetic pathway that inflicts DNA damage upon eukaryotic cells and contributes to colorectal cancer and tumor formation in the mammalian gut. Thus far, homologs of this pathway have only been found in closely relatedEnterobacteriaceae, while a divergent variant of this gene cluster was recently discovered in a marine alphaproteobacterialPseudovibriostrain. Herein, we sequenced the genome ofFrischella perraraPEB0191, a bacterial gut symbiont of honey bees and identified a homologous colibactin biosynthetic pathway related to those found inEnterobacteriaceae. We show that the colibactin genomic island (GI) has conserved gene synteny and biosynthetic module architecture acrossF. perrara,Enterobacteriaceae, and thePseudovibriostrain. Comparative metabolomics analyses ofF. perraraandE. colifurther reveal that these two bacteria produce related colibactin pathway-dependent metabolites. Finally, we demonstrate thatF. perrara, likeE. coli, causes DNA damage in eukaryotic cellsin vitroin a colibactin pathway-dependent manner. Together, these results support that divergent variants of the colibactin biosynthetic pathway are widely distributed among bacterial symbionts, producing related secondary metabolites and likely endowing its producer with functional capabilities important for diverse symbiotic associations.

2020 ◽  
Vol 86 (13) ◽  
Author(s):  
Breah LaSarre ◽  
Adam M. Deutschbauer ◽  
Crystal E. Love ◽  
James B. McKinlay

ABSTRACT Microbial interactions abound in natural ecosystems and shape community structure and function. Substantial attention has been given to cataloging mechanisms by which microbes interact, but there is a limited understanding of the genetic landscapes that promote or hinder microbial interactions. We previously developed a mutualistic coculture pairing Escherichia coli and Rhodopseudomonas palustris, wherein E. coli provides carbon to R. palustris in the form of glucose fermentation products and R. palustris fixes N2 gas and provides nitrogen to E. coli in the form of NH4+. The stable coexistence and reproducible trends exhibited by this coculture make it ideal for interrogating the genetic underpinnings of a cross-feeding mutualism. Here, we used random barcode transposon sequencing (RB-TnSeq) to conduct a genome-wide search for E. coli genes that influence fitness during cooperative growth with R. palustris. RB-TnSeq revealed hundreds of genes that increased or decreased E. coli fitness in a mutualism-dependent manner. Some identified genes were involved in nitrogen sensing and assimilation, as expected given the coculture design. The other identified genes were involved in diverse cellular processes, including energy production and cell wall and membrane biogenesis. In addition, we discovered unexpected purine cross-feeding from R. palustris to E. coli, with coculture rescuing growth of an E. coli purine auxotroph. Our data provide insight into the genes and gene networks that can influence a cross-feeding mutualism and underscore that microbial interactions are not necessarily predictable a priori. IMPORTANCE Microbial communities impact life on Earth in profound ways, including driving global nutrient cycles and influencing human health and disease. These community functions depend on the interactions that resident microbes have with the environment and each other. Thus, identifying genes that influence these interactions will aid the management of natural communities and the use of microbial consortia as biotechnology. Here, we identified genes that influenced Escherichia coli fitness during cooperative growth with a mutualistic partner, Rhodopseudomonas palustris. Although this mutualism centers on the bidirectional exchange of essential carbon and nitrogen, E. coli fitness was positively and negatively affected by genes involved in diverse cellular processes. Furthermore, we discovered an unexpected purine cross-feeding interaction. These results contribute knowledge on the genetic foundation of a microbial cross-feeding interaction and highlight that unanticipated interactions can occur even within engineered microbial communities.


2019 ◽  
Vol 8 (4) ◽  
Author(s):  
Vishal Singh Somvanshi ◽  
Bhumika Dubay ◽  
Jyoti Kushwah ◽  
Sivakumar Ramamoorthy ◽  
Udayakumar S. Vishnu ◽  
...  

Photorhabdus bacteria exhibit contrasting lifestyles; they are virulent insect pathogens but symbionts of the entomopathogenic Heterorhabditis nematodes. Photorhabdus genomes encode several secondary metabolites and insecticidal protein toxins.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Erin M. Nawrocki ◽  
Hillary M. Mosso ◽  
Edward G. Dudley

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) strains, including E. coli O157:H7, cause severe illness in humans due to the production of Shiga toxin (Stx) and other virulence factors. Because Stx is coregulated with lambdoid prophage induction, its expression is especially susceptible to environmental cues. Infections with Stx-producing E. coli can be difficult to model due to the wide range of disease outcomes: some infections are relatively mild, while others have serious complications. Probiotic organisms, members of the gut microbiome, and organic acids can depress Stx production, in many cases by inhibiting the growth of EHEC strains. On the other hand, the factors currently known to amplify Stx act via their effect on the stx-converting phage. Here, we characterize two interactive mechanisms that increase Stx production by O157:H7 strains: first, direct interactions with phage-susceptible E. coli, and second, indirect amplification by secreted factors. Infection of susceptible strains by the stx-converting phage can expand the Stx-producing population in a human or animal host, and phage infection has been shown to modulate virulence in vitro and in vivo. Acellular factors, particularly colicins and microcins, can kill O157:H7 cells but may also trigger Stx expression in the process. Colicins, microcins, and other bacteriocins have diverse cellular targets, and many such molecules remain uncharacterized. The identification of additional Stx-amplifying microbial interactions will improve our understanding of E. coli O157:H7 infections and help elucidate the intricate regulation of pathogenicity in EHEC strains.


2012 ◽  
Vol 79 (2) ◽  
pp. 722-724 ◽  
Author(s):  
Yuan Yan ◽  
Joy G. Waite-Cusic ◽  
Periannan Kuppusamy ◽  
Ahmed E. Yousef

ABSTRACTIntracellular free iron ofEscherichia coliwas determined by whole-cell electron paramagnetic resonance spectrometry. Ultrahigh pressure (UHP) increased both intracellular free iron and cell lethality in a pressure-dose-dependent manner. The iron chelator 2,2′-dipyridyl protected cells against UHP treatments. A mutation that produced iron overload conditions sensitizedE. colito UHP treatment.


2012 ◽  
Vol 78 (12) ◽  
pp. 4468-4480 ◽  
Author(s):  
Lena Studt ◽  
Philipp Wiemann ◽  
Karin Kleigrewe ◽  
Hans-Ulrich Humpf ◽  
Bettina Tudzynski

ABSTRACTFusarium fujikuroiproduces a variety of secondary metabolites, of which polyketides form the most diverse group. Among these are the highly pigmented naphthoquinones, which have been shown to possess different functional properties for the fungus. A group of naphthoquinones, polyketides related to fusarubin, were identified inFusariumspp. more than 60 years ago, but neither the genes responsible for their formation nor their biological function has been discovered to date. In addition, although it is known that the sexual fruiting bodies in which the progeny of the fungus develops are darkly colored by a polyketide synthase (PKS)-derived pigment, the structure of this pigment has never been elucidated. Here we present data that link the fusarubin-type polyketides to a defined gene cluster, which we designatefsr, and demonstrate that the fusarubins are the pigments responsible for the coloration of the perithecia. We studied their regulation and the function of the single genes within the cluster by a combination of gene replacements and overexpression of the PKS-encoding gene, and we present a model for the biosynthetic pathway of the fusarubins based on these data.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Aisha T. Burton ◽  
Aaron DeLoughery ◽  
Gene-Wei Li ◽  
Daniel B. Kearns

ABSTRACT Laboratory strains of Bacillus subtilis encode many alternative sigma factors, each dedicated to expressing a unique regulon such as those involved in stress resistance, sporulation, and motility. The ancestral strain of B. subtilis also encodes an additional sigma factor homolog, ZpdN, not found in lab strains due to being encoded on the large, low-copy-number plasmid pBS32, which was lost during domestication. DNA damage triggers pBS32 hyperreplication and cell death in a manner that depends on ZpdN, but how ZpdN mediates these effects is unknown. Here, we show that ZpdN is a bona fide sigma factor that can direct RNA polymerase to transcribe ZpdN-dependent genes, and we rename ZpdN SigN accordingly. Rend-seq (end-enriched transcriptome sequencing) analysis was used to determine the SigN regulon on pBS32, and the 5′ ends of transcripts were used to predict the SigN consensus sequence. Finally, we characterize the regulation of SigN itself and show that it is transcribed by at least three promoters: PsigN1, a strong SigA-dependent LexA-repressed promoter; PsigN2, a weak SigA-dependent constitutive promoter; and PsigN3, a SigN-dependent promoter. Thus, in response to DNA damage SigN is derepressed and then experiences positive feedback. How cells die in a pBS32-dependent manner remains unknown, but we predict that death is the product of expressing one or more genes in the SigN regulon. IMPORTANCE Sigma factors are utilized by bacteria to control and regulate gene expression. Some sigma factors are activated during times of stress to ensure the survival of the bacterium. Here, we report the presence of a sigma factor that is encoded on a plasmid that leads to cellular death after DNA damage.


2019 ◽  
Vol 85 (11) ◽  
Author(s):  
Tomokazu Ito ◽  
Kana Yamamoto ◽  
Ran Hori ◽  
Ayako Yamauchi ◽  
Diana M. Downs ◽  
...  

ABSTRACTEscherichia coliYggS (COG0325) is a member of the highly conserved pyridoxal 5′-phosphate (PLP)-binding protein (PLPBP) family. Recent studies suggested a role for this protein family in the homeostasis of vitamin B6and amino acids. The deletion or mutation of a member of this protein family causes pleiotropic effects in many organisms and is causative of vitamin B6-dependent epilepsy in humans. To date, little has been known about the mechanism by which lack of YggS results in these diverse phenotypes. In this study, we determined that the pyridoxine (PN) sensitivity observed inyggS-deficientE. coliwas caused by the pyridoxine 5′-phosphate (PNP)-dependent overproduction of Val, which is toxic toE. coli. The data suggest that theyggSmutation impacts Val accumulation by perturbing the biosynthetic of Thr from homoserine (Hse). Exogenous Hse inhibited the growth of theyggSmutant, caused further accumulation of PNP, and increased the levels of some intermediates in the Thr-Ile-Val metabolic pathways. Blocking the Thr biosynthetic pathway or decreasing the intracellular PNP levels abolished the perturbations of amino acid metabolism caused by the exogenous PN and Hse. Our data showed that a high concentration of intracellular PNP is the root cause of at least some of the pleiotropic phenotypes described for ayggSmutant ofE. coli.IMPORTANCERecent studies showed that deletion or mutation of members of the YggS protein family causes pleiotropic effects in many organisms. Little is known about the causes, mechanisms, and consequences of these diverse phenotypes. It was previously shown thatyggSmutations inE. coliresult in the accumulation of PNP and some metabolites in the Ile/Val biosynthetic pathway. This work revealed that some exogenous stresses increase the aberrant accumulation of PNP in theyggSmutant. In addition, the current report provides evidence indicating that some, but not all, of the phenotypes of theyggSmutant inE. coliare due to the elevated PNP level. These results will contribute to continuing efforts to determine the molecular functions of the members of the YggS protein family.


2011 ◽  
Vol 80 (3) ◽  
pp. 1243-1251 ◽  
Author(s):  
Yan Zhou ◽  
Jing Tao ◽  
Hao Yu ◽  
Jinjing Ni ◽  
Lingbing Zeng ◽  
...  

Type VI secretion systems (T6SSs) are involved in the pathogenicity of several Gram-negative bacteria. Based on sequence analysis, we found that a cluster ofEscherichia colivirulencefactors (EVF) encoding a putative T6SS exists in the genome of the meningitis-causingE. coliK1 strain RS218. The T6SS-associated deletion mutants exhibited significant defects in binding to and invasion of human brain microvascular endothelial cells (HBMEC) compared with the parent strain. Hcp family proteins (the hallmark of T6SS), including Hcp1 and Hcp2, were localized in the bacterial outer membrane, but the involvements of Hcp1 and Hcp2 have been shown to differ inE. coli-HBMEC interaction. The deletion mutant ofhcp2showed defects in the bacterial binding to and invasion of HBMEC, while Hcp1 was secreted in a T6SS-dependent manner and induced actin cytoskeleton rearrangement, apoptosis, and the release of interleukin-6 (IL-6) and IL-8 in HBMEC. These findings demonstrate that the T6SS is functional inE. coliK1, and two Hcp family proteins participate in different steps ofE. coliinteraction with HBMEC in a coordinate manner, e.g., binding to and invasion of HBMEC, the cytokine and chemokine release followed by cytoskeleton rearrangement, and apoptosis in HBMEC. This is the first demonstration of the role of T6SS in meningitis-causingE. coliK1, and T6SS-associated Hcp family proteins are likely to contribute to the pathogenesis ofE. colimeningitis.


2011 ◽  
Vol 80 (2) ◽  
pp. 688-703 ◽  
Author(s):  
Jacqueline Njoroge ◽  
Vanessa Sperandio

ABSTRACTThe human pathogen enterohemorrhagicEscherichia coli(EHEC) O157:H7 has two histidine sensor kinases, QseC and QseE, which respond to the mammalian adrenergic hormones epinephrine and norepinephrine by increasing their autophosphorylation. Although QseC and QseE are present in nonpathogenic strains ofE. coli, EHEC exploits these kinases for virulence regulation. To further investigate the full extent of epinephrine and its sensors' impact on EHEC virulence, we performed transcriptomic and phenotypic analyses of single and double deletions ofqseCandqseEgenes in the absence or presence of epinephrine. We showed that in EHEC, epinephrine sensing seems to occur primarily through QseC and QseE. We also observed that QseC and QseE regulate expression of the locus of enterocyte effacement (LEE) genes positively and negatively, respectively. LEE activation, which is required for the formation of the characteristic attaching and effacing (A/E) lesions by EHEC on epithelial cells, is epinephrine dependent. Regulation of the LEE and the non-LEE-contained virulence factor genenleAby QseE is indirect, through transcription inhibition of the RcsB response regulator. Finally, we show that coincubation of HeLa cells with epinephrine increases EHEC infectivity in a QseC- and QseE-dependent manner. These results genetically and phenotypically map the contributions of the two adrenergic sensors QseC and QseE to EHEC pathogenesis.


2017 ◽  
Vol 83 (10) ◽  
Author(s):  
Gabrielle M. Grandchamp ◽  
Lews Caro ◽  
Elizabeth A. Shank

ABSTRACT In microbial communities, bacteria chemically and physically interact with one another. Some of these interactions are mediated by secreted specialized metabolites that act as either intraspecies or interspecies signals to alter gene expression and to change cell physiology. Bacillus subtilis is a well-characterized soil microbe that can differentiate into multiple cell types, including metabolically dormant endospores. We were interested in identifying microbial interactions that affected sporulation in B. subtilis. Using a fluorescent transcriptional reporter, we observed that coculturing B. subtilis with Escherichia coli promoted sporulation gene expression via a secreted metabolite. To identify the active compound, we screened the E. coli Keio Collection and identified the sporulation-accelerating cue as the siderophore enterobactin. B. subtilis has multiple iron acquisition systems that are used to take up the B. subtilis-produced siderophore bacillibactin, as well as to pirate exogenous siderophores such as enterobactin. While B. subtilis uses a single substrate binding protein (FeuA) to take up both bacillibactin and enterobactin, we discovered that it requires two distinct genes to sporulate in response to these siderophores (the esterase gene besA for bacillibactin and a putative esterase gene, ybbA, for enterobactin). In addition, we found that siderophores from a variety of other microbial species also promote sporulation in B. subtilis. Our results thus demonstrate that siderophores can act not only as bacterial iron acquisition systems but also as interspecies cues that alter cellular development and accelerate sporulation in B. subtilis. IMPORTANCE While much is known about the genetic regulation of Bacillus subtilis sporulation, little is understood about how other bacteria influence this process. This work describes an interaction between Escherichia coli and B. subtilis that accelerates sporulation in B. subtilis. The interaction is mediated by the E. coli siderophore enterobactin; we show that other species' siderophores also promote sporulation gene expression in B. subtilis. These results suggest that siderophores not only may supply bacteria with the mineral nutrient iron but also may play a role in bacterial interspecies signaling, providing a cue for sporulation. Siderophores are produced by many bacterial species and thus potentially play important roles in altering bacterial cell physiology in diverse environments.


Sign in / Sign up

Export Citation Format

Share Document