scholarly journals The self-organization of plant microtubules in three dimensions enable stable cortical localization and sensitivity to external cues

2017 ◽  
Author(s):  
Vincent Mirabet ◽  
Pawel Krupinski ◽  
Olivier Hamant ◽  
Elliot M Meyerowitz ◽  
Henrik Jönsson ◽  
...  

AbstractMany cell functions rely on the ability of microtubules to self-organize as complex networks. In plants, cortical microtubules are essential to determine cell shape as they guide the deposition of cellulose microfibrils, and thus control mechanical anisotropy in the cell wall. Here we analyze how, in turn, cell shape may influence microtubule behavior. Using a computational model of microtubules enclosed in a three-dimensional space, We show that the microtubule network has spontaneous configurations that could explain many experimental observations without resorting to specific regulation. In particular, we find that the preferred localization of microtubules at the cortex emerges from directional persistence of the microtubules, combined with their growth mode. We identified microtubule parameters that seem relatively insensitive to cell shape, such as length or number. In contrast, microtubule array anisotropy depends strongly on local curvature of the cell surface and global orientation follows robustly the longest axis of the cell. Lastly, we found that the network is capable of reorienting toward weak external directional cues. Altogether our simulations show that the microtubule network is a good transducer of weak external polarity, while at the same time, it easily reaches stable global configurations.Author summaryPlants exhibit an astonishing diversity in architecture and shape. A key to such diversity is the ability of their cells to coordinate and grow to reach a broad spectrum of sizes and shapes. Cell growth in plants is guided by the microtubule cytoskeleton. Here, we seek to understand how microtubules self-organize close to the cell surface. We build upon previous two-dimensional models and we consider microtubules as lines growing in three dimensions, accounting for interactions between microtubules or between microtubules and the cell surface. We show that microtubule arrays are able to adapt to various cell shapes and to reorient in response to factors such as signals or environment. Altogether, our results help to understand how the microtubule cytoskeleton contributes to the diversity of plant shapes and to how these shapes adapt to environment.

2018 ◽  
Author(s):  
Lucie Riglet ◽  
Frédérique Rozier ◽  
Chie Kodera ◽  
Isabelle Fobis-Loisy ◽  
Thierry Gaude

ABSTRACTSuccessful fertilization in angiosperms depends on the proper trajectory of pollen tubes through the pistil tissues to reach the ovules. Pollen tubes first grow within the cell wall of the papilla cells, applying pressure to the cell. Mechanical forces are known to play a major role in plant cell shape by controlling the orientation of cortical microtubules (CMTs), which in turn mediate deposition of cellulose microfibrils (CMFs). Here, by combining cell imaging and genetic approaches, we show that isotropic reorientation of CMTs and CMFs in aged and katanin1-5 (ktn1-5) papilla cells is accompanied by a tendency of pollen tubes to coil around the papillae. Furthermore, we uncover that aged and ktn1-5 papilla cells have a softer cell wall and provide less resistance to pollen tube growth. Our results reveal an unexpected role for KTN1 in pollen tube guidance by ensuring mechanical anisotropy of the papilla cell wall.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Lucie Riglet ◽  
Frédérique Rozier ◽  
Chie Kodera ◽  
Simone Bovio ◽  
Julien Sechet ◽  
...  

Successful fertilization in angiosperms depends on the proper trajectory of pollen tubes through the pistil tissues to reach the ovules. Pollen tubes first grow within the cell wall of the papilla cells, applying pressure to the cell. Mechanical forces are known to play a major role in plant cell shape by controlling the orientation of cortical microtubules (CMTs), which in turn mediate deposition of cellulose microfibrils (CMFs). Here, by combining imaging, genetic and chemical approaches, we show that isotropic reorientation of CMTs and CMFs in aged Col-0 and katanin1-5 (ktn1-5) papilla cells is accompanied by a tendency of pollen tubes to coil around the papillae. We show that this coiled phenotype is associated with specific mechanical properties of the cell walls that provide less resistance to pollen tube growth. Our results reveal an unexpected role for KTN1 in pollen tube guidance on the stigma by ensuring mechanical anisotropy of the papilla cell wall.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


1983 ◽  
Vol 4 (9) ◽  
pp. 256-259 ◽  
Author(s):  
Jeffrey A Bluestone ◽  
Richard J Hodes

2008 ◽  
Vol 99 (5) ◽  
pp. 2602-2616 ◽  
Author(s):  
Marion R. Van Horn ◽  
Pierre A. Sylvestre ◽  
Kathleen E. Cullen

When we look between objects located at different depths the horizontal movement of each eye is different from that of the other, yet temporally synchronized. Traditionally, a vergence-specific neuronal subsystem, independent from other oculomotor subsystems, has been thought to generate all eye movements in depth. However, recent studies have challenged this view by unmasking interactions between vergence and saccadic eye movements during disconjugate saccades. Here, we combined experimental and modeling approaches to address whether the premotor command to generate disconjugate saccades originates exclusively in “vergence centers.” We found that the brain stem burst generator, which is commonly assumed to drive only the conjugate component of eye movements, carries substantial vergence-related information during disconjugate saccades. Notably, facilitated vergence velocities during disconjugate saccades were synchronized with the burst onset of excitatory and inhibitory brain stem saccadic burst neurons (SBNs). Furthermore, the time-varying discharge properties of the majority of SBNs (>70%) preferentially encoded the dynamics of an individual eye during disconjugate saccades. When these experimental results were implemented into a computer-based simulation, to further evaluate the contribution of the saccadic burst generator in generating disconjugate saccades, we found that it carries all the vergence drive that is necessary to shape the activity of the abducens motoneurons to which it projects. Taken together, our results provide evidence that the premotor commands from the brain stem saccadic circuitry, to the target motoneurons, are sufficient to ensure the accurate control shifts of gaze in three dimensions.


2017 ◽  
Vol 3 ◽  
pp. e123 ◽  
Author(s):  
Ken Arroyo Ohori ◽  
Hugo Ledoux ◽  
Jantien Stoter

Objects of more than three dimensions can be used to model geographic phenomena that occur in space, time and scale. For instance, a single 4D object can be used to represent the changes in a 3D object’s shape across time or all its optimal representations at various levels of detail. In this paper, we look at how such higher-dimensional space-time and space-scale objects can be visualised as projections from ℝ4to ℝ3. We present three projections that we believe are particularly intuitive for this purpose: (i) a simple ‘long axis’ projection that puts 3D objects side by side; (ii) the well-known orthographic and perspective projections; and (iii) a projection to a 3-sphere (S3) followed by a stereographic projection to ℝ3, which results in an inwards-outwards fourth axis. Our focus is in using these projections from ℝ4to ℝ3, but they are formulated from ℝnto ℝn−1so as to be easily extensible and to incorporate other non-spatial characteristics. We present a prototype interactive visualiser that applies these projections from 4D to 3D in real-time using the programmable pipeline and compute shaders of the Metal graphics API.


1993 ◽  
Vol 13 (10) ◽  
pp. 6052-6063
Author(s):  
R Kapeller ◽  
R Chakrabarti ◽  
L Cantley ◽  
F Fay ◽  
S Corvera

Phosphatidylinositol (PI)-3' kinase catalyzes the formation of PI 3,4-diphosphate and PI 3,4,5-triphosphate in response to stimulation of cells by platelet-derived growth factor (PDGF). Here we report that tyrosine-phosphorylated PDGF receptors, the p85 subunit of PI-3' kinase (p85), and activated PI-3' kinase are found in isolated clathrin-coated vesicles within 2 min of exposure of cells to PDGF, indicating that both receptor and activated PI-3' kinase enter the endocytic pathway. Immunofluorescence analysis of p85 in serum-starved cells revealed a punctate/reticular staining pattern, concentrated in the perinuclear region and displaying high focal concentration at the centrosome. In addition, partial coalignment of p85 with microtubules was observed after optical sectioning microscopy and image reconstruction. The association of p85 with the microtubule network was further evidenced by the microtubule-depolymerizing drug nocodazole, which caused a redistribution of p85 from the perinuclear region to the cell periphery. Interestingly, the most significant effect of PDGF on the distribution of p85 was an increase in the staining intensity of this protein in the perinuclear region, and this effect was eliminated by prior treatment of cells with nocodazole. These results suggest that PDGF receptor-p85 complexes internalize and transit in association with the microtubule cytoskeleton. In addition, the high concentration of p85 in intracellular structures in the absence of PDGF stimulation suggests additional roles for this protein independent of its association with receptor tyrosine kinases.


1985 ◽  
Vol 74 (1) ◽  
pp. 219-237
Author(s):  
C.L. Lachney ◽  
T.A. Lonergan

The role of cytoplasmic microtubules in a recently reported biological clock-controlled rhythm in cell shape of the alga Euglena gracilis (strain Z) was examined using indirect immunofluorescence microscopy. The resulting fluorescent patterns indicated that, unlike many other cell systems, Euglena cells apparently change from round to long to round cell shape without associated cytoplasmic microtubule assembly and disassembly. Instead, the different cell shapes were correlated with microtubule patterns, which suggested that movement of stable microtubules to accomplish cell shape changes. In live intact cells, these microtubules were demonstrated by immunofluorescence to be stable to lowered temperature and elevated intracellular Ca2+ levels, treatments that are commonly used to depolymerize microtubules. In cells extracted in detergent at low temperature or in the presence of elevated Ca2+ levels, the fluorescent image of the microtubules was disrupted. Transmission electron microscopy confirmed the loss of one subset of pellicle microtubules. The difference in microtubule stability to these agents between live intact cells and cells extracted in detergent suggested the presence of a microtubule-stabilizing factor in live cells, which is released from the cell by extraction with detergent, thereby permitting microtubule depolymerization by Ca2+ or lowered temperature. The calmodulin antagonist trifluoperazine prevented the Ca2+-induced disruption of the fluorescent microtubule pattern in cells extracted in detergent. These results implied the involvement of calmodulin in the sensitivity to Ca2+ of the microtubules of cells extracted in detergent.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Elizabeth A. Mueller ◽  
Petra Anne Levin

ABSTRACT Single-celled organisms must adapt their physiology to persist and propagate across a wide range of environmental conditions. The growth and division of bacterial cells depend on continuous synthesis of an essential extracellular barrier: the peptidoglycan cell wall, a polysaccharide matrix that counteracts turgor pressure and confers cell shape. Unlike many other essential processes and structures within the bacterial cell, the peptidoglycan cell wall and its synthesis machinery reside at the cell surface and are thus uniquely vulnerable to the physicochemical environment and exogenous threats. In addition to the diversity of stressors endangering cell wall integrity, defects in peptidoglycan metabolism require rapid repair in order to prevent osmotic lysis, which can occur within minutes. Here, we review recent work that illuminates mechanisms that ensure robust peptidoglycan metabolism in response to persistent and acute environmental stress. Advances in our understanding of bacterial cell wall quality control promise to inform the development and use of antimicrobial agents that target the synthesis and remodeling of this essential macromolecule. IMPORTANCE Nearly all bacteria are encased in a peptidoglycan cell wall, an essential polysaccharide structure that protects the cell from osmotic rupture and reinforces cell shape. The integrity of this protective barrier must be maintained across the diversity of environmental conditions wherein bacteria replicate. However, at the cell surface, the cell wall and its synthesis machinery face unique challenges that threaten their integrity. Directly exposed to the extracellular environment, the peptidoglycan synthesis machinery encounters dynamic and extreme physicochemical conditions, which may impair enzymatic activity and critical protein-protein interactions. Biotic and abiotic stressors—including host defenses, cell wall active antibiotics, and predatory bacteria and phage—also jeopardize peptidoglycan integrity by introducing lesions, which must be rapidly repaired to prevent cell lysis. Here, we review recently discovered mechanisms that promote robust peptidoglycan synthesis during environmental and acute stress and highlight the opportunities and challenges for the development of cell wall active therapeutics.


Author(s):  
David B. Segala ◽  
David Chelidze

The need for reduced order models (ROMs) has become considerable higher with the increasing technological advances that allows one to model complex dynamical systems. When using ROMs, the following two questions always arise: 1) “What is the lowest dimensional ROM?” and 2) “How well does the ROM capture the dynamics of the full scale system model?” This paper considers the newly developed concepts the authors refer to as subspace robustness — the ROM is valid over a range of initial conditions, forcing functions, and system parameters — and dynamical consistency — the ROM embeds the nonlinear manifold — which quanitatively answers each question. An eighteen degree-of-freedom pinned-pinned beam which is supported by two nonlinear springs is forced periodically and stochastically for building ROMs. Smooth and proper orthogonal decompositions (SOD and POD, respectively) based ROMs are dynamically consistent in four or greater dimensions. In the strictest sense POD-based ROMs are not considered coherent whereas, SOD-based ROMs are coherent in roughly five dimesions and greater. Is is shown that in the periodically forced case, the full scale dynamics are captured in a five-dimensional POD and SOD-based ROM. For the randomly forced case, POD and SOD-based ROMs need three dimensions but SOD captures the dynamics better in a lower-dimensional space. When the ROM is developed from a different set of initial conditions and forcing values, SOD outperforms POD in periodic forcing case and are equal in the random forcing case.


Sign in / Sign up

Export Citation Format

Share Document