scholarly journals A suite of transgenic driver and reporter mouse lines with enhanced brain cell type targeting and functionality

2017 ◽  
Author(s):  
Tanya L. Daigle ◽  
Linda Madisen ◽  
Travis A. Hage ◽  
Matthew T. Valley ◽  
Ulf Knoblich ◽  
...  

SUMMARYModern genetic approaches are powerful in providing access to diverse types of neurons within the mammalian brain and greatly facilitating the study of their function. We here report a large set of driver and reporter transgenic mouse lines, including 23 new driver lines targeting a variety of cortical and subcortical cell populations and 26 new reporter lines expressing an array of molecular tools. In particular, we describe the TIGRE2.0 transgenic platform and introduce Cre-dependent reporter lines that enable optical physiology, optogenetics, and sparse labeling of genetically-defined cell populations. TIGRE2.0 reporters broke the barrier in transgene expression level of single-copy targeted-insertion transgenesis in a wide range of neuronal types, along with additional advantage of a simplified breeding strategy compared to our first-generation TIGRE lines. These novel transgenic lines greatly expand the repertoire of high-precision genetic tools available to effectively identify, monitor, and manipulate distinct cell types in the mouse brain.

2019 ◽  
Author(s):  
Aleksandar Vještica ◽  
Magdalena Marek ◽  
Pedro N’kosi ◽  
Laura Merlini ◽  
Gaowen Liu ◽  
...  

AbstractSchizosaccharomyces pombe is a widely used model organism that resembles higher eukaryotes in many aspects of cell physiology. Its popularity as an experimental system partially stems from the ease of genetic manipulations, where the innate homology-targeted repair is exploited to precisely edit the genome. While vectors to incorporate exogenous sequences into the chromosomes are available, most are poorly characterized. Here we show that commonly used fission yeast vectors, which upon integration produce repetitive genomic regions, yield unstable genomic loci. We overcome this problem by designing a new series of Stable Integration Vectors (SIV) that target four different prototrophy genes. SIV produce non-repetitive, stable genomic loci and integrate predominantly as single copy. Additionally, we develop a set of complementary auxotrophic alleles that preclude false-positive integration events. We expand the vector series to include antibiotic resistance markers, promoters, fluorescent tags and terminators, and build a highly modular toolbox to introduce heterologous sequences. Finally, as proof of concept, we generate a large set of ready-to-use, fluorescent probes to mark organelles and cellular processes with a wide range of applications in fission yeast research.


2020 ◽  
Author(s):  
Hanchuan Peng ◽  
Peng Xie ◽  
Lijuan Liu ◽  
Xiuli Kuang ◽  
Yimin Wang ◽  
...  

Abstract Ever since the seminal findings of Ramon y Cajal, dendritic and axonal morphology has been recognized as a defining feature of neuronal types. Yet our knowledge concerning the diversity of neuronal morphologies, in particular distal axonal projection patterns, is extremely limited. To systematically obtain single neuron full morphology on a brain-wide scale, we established a platform with five major components: sparse labeling, whole-brain imaging, reconstruction, registration, and classification. We achieved sparse, robust and consistent fluorescent labeling of a wide range of neuronal types by combining transgenic or viral Cre delivery with novel transgenic reporter lines. We acquired high-resolution whole-brain fluorescent images from a large set of sparsely labeled brains using fluorescence micro-optical sectioning tomography (fMOST). We developed a set of software tools for efficient large-volume image data processing, registration to the Allen Mouse Brain Common Coordinate Framework (CCF), and computer-assisted morphological reconstruction. We reconstructed and analyzed the complete morphologies of 1,708 neurons from the striatum, thalamus, cortex and claustrum. Finally, we classified these cells into multiple morphological and projection types and identified a set of region-specific organizational rules of long-range axonal projections at the single cell level. Specifically, different neuron types from different regions follow highly distinct rules in convergent or divergent projection, feedforward or feedback axon termination patterns, and between-cell homogeneity or heterogeneity. Major molecularly defined classes or types of neurons have correspondingly distinct morphological and projection patterns, however, we also identify further remarkably extensive morphological and projection diversity at more fine-grained levels within the major types that cannot presently be accounted for by preexisting transcriptomic subtypes. These insights reinforce the importance of full morphological characterization of brain cell types and suggest a plethora of ways different cell types and individual neurons may contribute to the function of their respective circuits.


2019 ◽  
Author(s):  
Hanchuan Peng ◽  
Peng Xie ◽  
Lijuan Liu ◽  
Xiuli Kuang ◽  
Yimin Wang ◽  
...  

ABSTRACTEver since the seminal findings of Ramon y Cajal, dendritic and axonal morphology has been recognized as a defining feature of neuronal types. Yet our knowledge concerning the diversity of neuronal morphologies, in particular distal axonal projection patterns, is extremely limited. To systematically obtain single neuron full morphology on a brain-wide scale, we established a platform with five major components: sparse labeling, whole-brain imaging, reconstruction, registration, and classification. We achieved sparse, robust and consistent fluorescent labeling of a wide range of neuronal types by combining transgenic or viral Cre delivery with novel transgenic reporter lines. We acquired high-resolution whole-brain fluorescent images from a large set of sparsely labeled brains using fluorescence micro-optical sectioning tomography (fMOST). We developed a set of software tools for efficient large-volume image data processing, registration to the Allen Mouse Brain Common Coordinate Framework (CCF), and computer-assisted morphological reconstruction. We reconstructed and analyzed the complete morphologies of 1,708 neurons from the striatum, thalamus, cortex and claustrum. Finally, we classified these cells into multiple morphological and projection types and identified a set of region-specific organizational rules of long-range axonal projections at the single cell level. Specifically, different neuron types from different regions follow highly distinct rules in convergent or divergent projection, feedforward or feedback axon termination patterns, and between-cell homogeneity or heterogeneity. Major molecularly defined classes or types of neurons have correspondingly distinct morphological and projection patterns, however, we also identify further remarkably extensive morphological and projection diversity at more fine-grained levels within the major types that cannot presently be accounted for by preexisting transcriptomic subtypes. These insights reinforce the importance of full morphological characterization of brain cell types and suggest a plethora of ways different cell types and individual neurons may contribute to the function of their respective circuits.


2021 ◽  
Vol 15 ◽  
Author(s):  
Maximiliano José Nigro ◽  
Hinako Kirikae ◽  
Kasper Kjelsberg ◽  
Rajeevkumar Raveendran Nair ◽  
Menno P. Witter

The wide diversity of cortical inhibitory neuron types populating the cortex allows the assembly of diverse microcircuits and endows these circuits with different computational properties. Thus, characterizing neuronal diversity is fundamental to describe the building blocks of cortical microcircuits and probe their function. To this purpose, the mouse has emerged as a powerful tool to genetically label and manipulate specific inhibitory cell-types in the mammalian brain. Among these cell-types, the parvalbumin-expressing interneuron type (PV-INs) is perhaps the most characterized. Several mouse lines have been generated to target PV-INs. Among these mouse lines, the PV-IRES-Cre lines is the most widely used and demonstrated a high specificity and efficiency in targeting PV-INs in different cortical areas. However, a characterization of the performance across cortical regions is still missing. Here we show that the PV-IRES-Cre mouse line labels only a fraction of PV immunoreactive neurons in perirhinal cortex and other association areas. Our results point to a yet uncharacterized diversity within the PV-INs and emphasize the need to characterize these tools in specific cortical areas.


2020 ◽  
Author(s):  
Jelena Platisa ◽  
Hongkui Zeng ◽  
Linda Madisen ◽  
Lawrence B. Cohen ◽  
Vincent A Pieribone ◽  
...  

AbstractGenetically encoded voltage indicators (GEVIs) allow for cell-specific optical recordings of membrane potential changes in defined cell populations. One tool that would further their use in the in vivo mammalian brain is transgenic reporter animals that facilitate precise and repeatable targeting with high expression levels. The present literature on the development and use of transgenic mouse lines as vehicles for GEVI expression is limited. Here we report the first in vivo experiments using a transgenic reporter mouse for the GEVI ArcLight (Ai86(TITL-ArcLight)), which utilizes a Cre/tTA dependent expression system (TIGRE 1.0). Following pairing to appropriate Cre- and tTA transgenic mice, we report two mouse lines with ArcLight expression restricted to olfactory sensory neurons (OMP-ArcLight), and a subpopulation of interneurons that include periglomerular and granule cells (Emx1-ArcLight) in the olfactory bulb (OB). The ArcLight expression in these lines was sufficient for in vivo imaging of odorant responses in single trials. Odor responses were measured in the OB using epifluorescence and 2-photon imaging. The voltage responses were odor-specific and concentration-dependent, and confirmed earlier conclusions from calcium measurements. This study shows that the ArcLight Ai86(TITL-ArcLight) transgenic line is a flexible genetic tool that can be used to record neuronal electrical activity of a variety of cell types with a signal-to-noise ratio that is comparable to previous reports using viral transduction.


2020 ◽  
Author(s):  
Yang Eric Li ◽  
Sebastian Preissl ◽  
Xiaomeng Hou ◽  
Ziyang Zhang ◽  
Kai Zhang ◽  
...  

ABSTRACTThe mammalian cerebrum performs high level sensory, motor control and cognitive functions through highly specialized cortical networks and subcortical nuclei. Recent surveys of mouse and human brains with single cell transcriptomics1–3 and high-throughput imaging technologies4,5 have uncovered hundreds of neuronal cell types and a variety of non-neuronal cell types distributed in different brain regions, but the cell-type-specific transcriptional regulatory programs responsible for the unique identity and function of each brain cell type have yet to be elucidated. Here, we probe the accessible chromatin in >800,000 individual nuclei from 45 regions spanning the adult mouse isocortex, olfactory bulb, hippocampus and cerebral nuclei, and use the resulting data to define 491,818 candidate cis regulatory DNA elements in 160 distinct sub-types. We link a significant fraction of them to putative target genes expressed in diverse cerebral cell types and uncover transcriptional regulators involved in a broad spectrum of molecular and cellular pathways in different neuronal and glial cell populations. Our results provide a foundation for comprehensive analysis of gene regulatory programs of the mammalian brain and assist in the interpretation of non-coding risk variants associated with various neurological disease and traits in humans. To facilitate the dissemination of information, we have set up a web portal (http://catlas.org/mousebrain).


2018 ◽  
Author(s):  
Methodios Ximerakis ◽  
Scott L. Lipnick ◽  
Sean K. Simmons ◽  
Xian Adiconis ◽  
Brendan T. Innes ◽  
...  

The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how the brain is affected with aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide a comprehensive dataset of aging-related genes, pathways and ligand-receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell type specific manner, even at times in opposite directions. Thus, our data reveals that aging, rather than inducing a universal program drives a distinct transcriptional course in each cell population. These data provide an important resource for the aging community and highlight key molecular processes, including ribosomal biogenesis, underlying aging. We believe that this large-scale dataset, which is publicly accessible online (aging-mouse-brain), will facilitate additional discoveries directed towards understanding and modifying the aging process.


2021 ◽  
Author(s):  
Maximiliano Jose Nigro ◽  
Hinako Kirikae ◽  
Kasper Kjelsberg ◽  
Rajeevkumar Nair Raveendran ◽  
Menno Witter

The wide diversity of cortical inhibitory neuron types populating the cortex allows the assembly of diverse microcircuits and endows these circuits with different computational properties. Thus, characterizing neuronal diversity is fundamental to describe the building blocks of cortical microcircuits and probe their function. To this purpose, the mouse has emerged as a powerful tool to genetically label and manipulate specific inhibitory cell-types in the mammalian brain. Among these cell-types, the parvalbumin-expressing interneuron type (PV-INs) is perhaps the most characterized. Several mouse lines have been generated to target PV-INs. Among these mouse lines, the PV-IRES-Cre lines is the most widely used and demonstrated a high specificity and efficiency in targeting PV-INs in different cortical areas. However, a characterization of the performance across cortical regions is still missing. Here we show that the PV-IRES-Cre mouse line labels only a fraction of parvalbumin immunoreactive neurons in perirhinal cortex and other association areas. Our results point to a yet uncharacterized diversity within the PV-INs and emphasize the need to characterize these tools in specific cortical areas.


2021 ◽  
Author(s):  
Dimitri Rodarie ◽  
Csaba Veraszto ◽  
Yann Roussel ◽  
Michael Reimann ◽  
Daniel Keller ◽  
...  

The mouse brain contains a rich diversity of inhibitory interneuron types that have been characterized by their patterns of gene expression. However, the distribution of these cell types across the mouse brain is still incomplete. We developed a computational method to establish a consensus on the estimate of the densities of different interneuron types across the mouse brain. This method allows the unbiased integration of diverse and disparate datasets into a framework to predict interneuron densities for uncharted brain regions. We constrained our estimates based on previously computed brain-wide neuron density data, gene expression from in situ hybridization image stacks together with a wide range of values reported in the literature. Using optimization, we derived coherent estimates of cell densities for the different interneuron types. We estimated that 20.3% of all neurons in the mouse brain are inhibitory. Among all inhibitory neurons, 18% predominantly express parvalbumin (PV), 16% express somatostatin (SST), 3% express vasoactive intestinal peptide (VIP), and the remainder 63% belong to the residual GABAergic population. Our pipeline is extensible, allowing new cell types or data to be integrated as they become available. The data, algorithms, software, and results of this pipeline are publicly available and update the Blue Brain Cell Atlas. We find that our density estimations improve as more literature values are integrated. This work therefore leverages the research community to collectively converge on the numbers of each cell type in each brain region.


Immuno ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 78-90
Author(s):  
Johannes Burtscher ◽  
Grégoire P. Millet

Like in other neurodegenerative diseases, protein aggregation, mitochondrial dysfunction, oxidative stress and neuroinflammation are hallmarks of Parkinson’s disease (PD). Differentiating characteristics of PD include the central role of α-synuclein in the aggregation pathology, a distinct vulnerability of the striato-nigral system with the related motor symptoms, as well as specific mitochondrial deficits. Which molecular alterations cause neurodegeneration and drive PD pathogenesis is poorly understood. Here, we summarize evidence of the involvement of three interdependent factors in PD and suggest that their interplay is likely a trigger and/or aggravator of PD-related neurodegeneration: hypoxia, acidification and inflammation. We aim to integrate the existing knowledge on the well-established role of inflammation and immunity, the emerging interest in the contribution of hypoxic insults and the rather neglected effects of brain acidification in PD pathogenesis. Their tight association as an important aspect of the disease merits detailed investigation. Consequences of related injuries are discussed in the context of aging and the interaction of different brain cell types, in particular with regard to potential consequences on the vulnerability of dopaminergic neurons in the substantia nigra. A special focus is put on the identification of current knowledge gaps and we emphasize the importance of related insights from other research fields, such as cancer research and immunometabolism, for neurodegeneration research. The highlighted interplay of hypoxia, acidification and inflammation is likely also of relevance for other neurodegenerative diseases, despite disease-specific biochemical and metabolic alterations.


Sign in / Sign up

Export Citation Format

Share Document