scholarly journals High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins

2017 ◽  
Author(s):  
Mathias Mahn ◽  
Lihi Gibor ◽  
Katayun Cohen-Kashi Malina ◽  
Pritish Patil ◽  
Yoav Printz ◽  
...  

AbstractOptogenetic silencing allows time-resolved functional interrogation of defined neuronal populations. However, the limitations of inhibitory optogenetic tools impose stringent constraints on experimental paradigms. The high light power requirement of light-driven ion pumps and their effects on intracellular ion homeostasis pose unique challenges, particularly in experiments that demand inhibition of a widespread neuronal population in vivo. Guillardia theta anion-conducting channelrhodopsins (GtACRs) are promising in this regard, due to their high single-channel conductance and favorable photon-ion stoichiometry. However, GtACRs show poor membrane targeting in mammalian cells, and the activity of such channels can cause transient excitation in the axon due to an excitatory chloride reversal potential in this compartment. Here we address both problems by enhancing membrane targeting and subcellular compartmentalization of GtACRs. The resulting GtACR-based optogenetic tools show improved photocurrents, greatly reduced axonal excitation, high light sensitivity and rapid kinetics, allowing highly efficient inhibition of neuronal activity in the mammalian brain.

1993 ◽  
Vol 69 (5) ◽  
pp. 1433-1442 ◽  
Author(s):  
T. M. Egan ◽  
D. Dagan ◽  
I. B. Levitan

1. Single calcium-activated potassium channels (KCa channels) were recorded from membrane patches of rat olfactory bulb neurons in culture. Only one kind of KCa channel was seen, and it was present in approximately 50% of detached patches. 2. This channel, like maxi-KCa channels of other tissues, had a single-channel conductance of 270 pS, a reversal potential (Erev) of 0 mV in symmetrical K+, and was highly selective for K+ over Na+ and Cl-. 3. The KCa channel was blocked by d-tubocurarine (d-TC) on the cytoplasmic side, and charybdotoxin (CTX) on the extracellular side. This pharmacology is identical to that of one type of KCa channel from rat brain, observed previously in artificial bilayers and called the type 1 KCa channel. 4. The probability that the channel was in the open state (Po) increased with membrane depolarization. The position of the Po versus transmembrane voltage (Vm) curve was shifted by changes in [Ca2+]i so that the channel was open more often in higher [Ca2+]i. The gating kinetics resembled those of the type 1 KCa channel observed in bilayers. 5. Po was increased after superfusion of the cytoplasmic membrane surface with the active catalytic subunit of cyclic AMP-dependent protein kinase (PK-A), together with MgATP. Phosphorylation altered the distribution of channel closed times but had little effect on open times. The results suggest that phosphorylation is an important molecular mechanism in modulating the activity of this KCa channel from mammalian brain.


Author(s):  
G. Brent Dawe ◽  
Patricia M. G. E. Brown ◽  
Derek Bowie

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate-type glutamate receptors (AMPARs and KARs) are dynamic ion channel proteins that govern neuronal excitation and signal transduction in the mammalian brain. The four AMPAR and five KAR subunits can heteromerize with other subfamily members to create several combinations of tetrameric channels with unique physiological and pharmacological properties. While both receptor classes are noted for their rapid, millisecond-scale channel gating in response to agonist binding, the intricate structural rearrangements underlying their function have only recently been elucidated. This chapter begins with a review of AMPAR and KAR nomenclature, topology, and rules of assembly. Subsequently, receptor gating properties are outlined for both single-channel and synaptic contexts. The structural biology of AMPAR and KAR proteins is also discussed at length, with particular focus on the ligand-binding domain, where allosteric regulation and alternative splicing work together to dictate gating behavior. Toward the end of the chapter there is an overview of several classes of auxiliary subunits, notably transmembrane AMPAR regulatory proteins and Neto proteins, which enhance native AMPAR and KAR expression and channel gating, respectively. Whether bringing an ion channel novice up to speed with glutamate receptor theory and terminology or providing a refresher for more seasoned biophysicists, there is much to appreciate in this summation of work from the glutamate receptor field.


2002 ◽  
Vol 70 (9) ◽  
pp. 4880-4891 ◽  
Author(s):  
Julia Eitel ◽  
Petra Dersch

ABSTRACT The YadA protein is a major adhesin of Yersinia pseudotuberculosis that promotes tight adhesion to mammalian cells by binding to extracellular matrix proteins. In this study, we first addressed the possibility of competitive interference of YadA and the major invasive factor invasin and found that expression of YadA in the presence of invasin affected neither the export nor the function of invasin in the outer membrane. Furthermore, expression of YadA promoted both bacterial adhesion and high-efficiency invasion entirely independently of invasin. Antibodies against fibronectin and β1 integrins blocked invasion, indicating that invasion occurs via extracellular-matrix-dependent bridging between YadA and the host cell β1 integrin receptors. Inhibitor studies also demonstrated that tyrosine and Ser/Thr kinases, as well as phosphatidylinositol 3-kinase, are involved in the uptake process. Further expression studies revealed that yadA is regulated in response to several environmental parameters, including temperature, ion and nutrient concentrations, and the bacterial growth phase. In complex medium, YadA production was generally repressed but could be induced by addition of Mg2+. Maximal expression of yadA was obtained in exponential-phase cells grown in minimal medium at 37°C, conditions under which the invasin gene is repressed. These results suggest that YadA of Y. pseudotuberculosis constitutes another independent high-level uptake pathway that might complement other cell entry mechanisms (e.g., invasin) at certain sites or stages during the infection process.


1987 ◽  
Vol 7 (6) ◽  
pp. 2286-2293 ◽  
Author(s):  
V C Bond ◽  
B Wold

Poly-L-ornithine has been used to introduce DNA and RNA into mammalian cells in culture. Ornithine-mediated DNA transfer has several interesting and potentially useful properties. The procedure is technically straightforward and is easily applied to either small or large numbers of recipient cells. The efficiency of transformation is high. Under optimal conditions, 1 to 2% of recipient mouse L cells take up and continue to express selectable marker genes. DNA content of transformants can be varied reproducibly, yielding cells with just one or two copies of the new gene under one set of conditions, while under a different set of conditions 25 to 50 copies are acquired. Cotransformation and expression of physically unlinked genes occur at high efficiency under conditions favoring multiple-copy transfer. Polyornithine promotes gene transfer into cell lines other than L cells. These include Friend erythroleukemia cells and NIH 3T3 cells. Both are transformed about 1 order of magnitude more efficiently by this procedure than by standard calcium phosphate products. However, the method does not abolish the large transformation efficiency differences between these cell lines that have been observed previously by other techniques. (vi) mRNA synthesized in vitro was also introduced into cells by this method. The RNA was translated resulting in a transient accumulation of the protein product.


1995 ◽  
Vol 268 (2) ◽  
pp. C389-C401 ◽  
Author(s):  
S. Chepilko ◽  
H. Zhou ◽  
H. Sackin ◽  
L. G. Palmer

The renal K+ channel (ROMK2) was expressed in Xenopus oocytes, and the patch-clamp technique was used to assess its conducting and gating properties. In cell-attached patches with 110 mM K+ in the bath and pipette, the reversal potential was near zero and the inward conductance (36 pS) was larger than the outward conductance (17 pS). In excised inside-out patches the channels showed rectification in the presence of 5 mM Mg2+ on the cytoplasmic side but not in Mg(2+)-free solution. Inward currents were also observed when K+ was replaced in the pipette by Rb+, NH4+, or thallium (Tl+). The reversal potentials under these conditions yielded a selectivity sequence of Tl+ > K+ > Rb+ > NH4+. On the other hand, the slope conductances for inward current gave a selectivity sequence of K+ = NH4+ > Tl+ > Rb+. The differences in the two sequences can be explained by the presence of cation binding sites within the channel, which interact with Rb+ and Tl+ more strongly and with NH4+ less strongly than with K+. Two other ions, Ba2+ and Cs+, blocked the channel from the outside. The effect of Ba2+ (1 mM) was to reduce the open probability of the channels, whereas Cs+ (10 mM) reduced the apparent single-channel current. The effects of both blockers are enhanced by membrane hyperpolarization. The kinetics of the channel were also studied in cell-attached patches. With K+ in the pipette the distribution of open times could be described by a single exponential (tau 0 = 25 ms), whereas two exponentials (tau 1 = 1 ms, tau 2 = 30 ms) were required to describe the closed-time distribution. Hyperpolarization of the oocyte membrane decreased the open probability and tau 0, and increased tau 1, tau 2, and the number of long closures. The presence of Tl+ in the pipette significantly altered the kinetics, reducing tau 0 and eliminating the long-lived closures. These results suggest that the gating of the channel may depend on the nature of the ion in the pore.


1983 ◽  
Vol 3 (6) ◽  
pp. 1123-1132
Author(s):  
Archibald S. Perkins ◽  
Paul T. Kirschmeier ◽  
Sebastiano Gattoni-Celli ◽  
I. Bernard Weinstein

We have developed a transfection vector for animal cells that contains long terminal repeat (LTR) sequences to promote expression. Plasmid p101/101, a derivative of plasmid pBR322 containing the complete Moloney murine sarcoma virus genome, was cut with restriction enzymes and religated so that both the 5′ and 3′ LTRs were retained and all but about 700 base pairs of the intervening viral sequences were removed. To test this vector, the Escherichia coli gene gpt was cloned into a unique Pst I site, between the two LTRs, with guanine and cytosine tailing, a method that can be generalized for insertion of any DNA segment into this vector. When DNA from recombinant plasmids in which the gpt gene was inserted in the same transcriptional polarity as the LTR sequences was transfected onto murine or rat fibroblast cultures, we obtained a high yield of Gpt + colonies. However, plasmid constructs with the gpt gene in the opposite polarity were virtually devoid of activity. With gpt in the proper orientation, restriction enzyme cuts within the LTRs or between the 5′ LTR and the gpt gene reduced transfection by more than 98%, whereas a cut between the gpt gene and the 3′ LTR gave an 80% reduction in activity. Thus, both 5′ and 3′ LTR sequences are essential for optimal gpt expression, although the 5′ LTR appears to play a more important role. When the LTR- gpt plasmid was transfected onto murine leukemia virus-infected mouse fibroblasts, we obtained evidence that RNA copies became pseudotyped into viral particles which could transfer the Gpt + phenotype into rodent cells with extremely high efficiency. This vector should prove useful for high-efficiency transduction of a variety of genes in mammalian cells.


Sensor Review ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tunan Chen ◽  
Fengxiang Ma ◽  
Yue Zhao ◽  
Zhenghai Liao ◽  
Zongjia Qiu ◽  
...  

Purpose This paper aims to establish a photoacoustic detection system for SO2 using UV-LED and testify its feasibility for sensitive measurement. The work in this paper can avoid potential crossover interference in infrared (IR) range and also balance the capability and cost of feasible excitation for photoacoustic detection system. Design/methodology/approach In this experimental work, a cantilever-enhanced–based photoacoustic SO2 detection system using an ultraviolet (UV) LED light source with a light power of 4 mW as the excitation was established. Findings A feasible photoacoustic detection system for SO2 using UV-LED was established. Experimental results demonstrate that the detection limit of the system can reach the level of 0.667 ppm, which can serve as a reference for the application of PAS in insulation fault diagnosis. Originality/value This work investigated the potential of using ultraviolet photoacoustic spectroscopy to detect trace SO2, which provided an ideal replacement of infrared-laser-based detection system. In this paper, a photoacoustic detection system using LED with a low light power was established. Low light power requirement can expand the options of light sources accordingly. In this paper, the absorption characteristics of SO2 in the presented detection system and ultraviolet range were studied. And the detection limit of the presented system was given. Both of which can provide reference to SO2 detection in ambient SF6.


2003 ◽  
Vol 2 (1) ◽  
pp. 181-190 ◽  
Author(s):  
Stephen K. Roberts

ABSTRACT In contrast to animal and plant cells, very little is known of ion channel function in fungal physiology. The life cycle of most fungi depends on the “filamentous” polarized growth of hyphal cells; however, no ion channels have been cloned from filamentous fungi and comparatively few preliminary recordings of ion channel activity have been made. In an attempt to gain an insight into the role of ion channels in fungal hyphal physiology, a homolog of the yeast K+ channel (ScTOK1) was cloned from the filamentous fungus, Neurospora crassa. The patch clamp technique was used to investigate the biophysical properties of the N. crassa K+ channel (NcTOKA) after heterologous expression of NcTOKA in yeast. NcTOKA mediated mainly time-dependent outward whole-cell currents, and the reversal potential of these currents indicated that it conducted K+ efflux. NcTOKA channel gating was sensitive to extracellular K+ such that channel activation was dependent on the reversal potential for K+. However, expression of NcTOKA was able to overcome the K+ auxotrophy of a yeast mutant missing the K+ uptake transporters TRK1 and TRK2, suggesting that NcTOKA also mediated K+ influx. Consistent with this, close inspection of NcTOKA-mediated currents revealed small inward K+ currents at potentials negative of EK. NcTOKA single-channel activity was characterized by rapid flickering between the open and closed states with a unitary conductance of 16 pS. NcTOKA was effectively blocked by extracellular Ca2+, verapamil, quinine, and TEA+ but was insensitive to Cs+, 4-aminopyridine, and glibenclamide. The physiological significance of NcTOKA is discussed in the context of its biophysical properties.


Sign in / Sign up

Export Citation Format

Share Document